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Abstract

Many try modeling groundwater contaminant transport to predict it. Is this
possible with rate-limited processes, and under what conditions? On occasion, cleanups
go slower than predicted (tailing) and hazardous concentrations reappear after cleanup is
thought complete (rebound). Rate-limited transport is blamed by many. When immobile
water is present, diffusion from varied sizes and shapes of immobile regions can cause
varied rate limitations (due to varied diffusion path lengths). Although known, most
modelers represent these varied rate-limiting processeé with a single “representative”
rate-parameter. This can yield poor predictions for long-term experiments, and the
parameter is generally time and pump-rate dependent. This model employs a distribution
of first-order rate parameters to investigate the effects of using a single rate-parameter.
Spatial effects are ignored by using volume-averaged concentrations (a point, well-mixed
model) and dilutive pumping and rate-limited transport are modeled to isolate rate-limited
transport for study. A three-parameter Gamma distribution defines the rate parameter
continuum. A clean flow approximation is used extensively, and pulsed pumping is
examined briefly. An effective time and pump-rate dependence is seen in the average
rate. Long-term soil and contaminant transport characteristics along with uptake history

or good experimentally-derived initial contaminant presence are concluded as necessary

for accurate predictions.




A POINT MODEL OF AQUIFER CLEANUP WITH A DISTRIBUTION OF

FIRST-ORDER RATE PARAMETERS

I Introduction

Groundwater Crucial

To Mankind. Our groundwater is a precious commodity. It provided drinking
water for 53 percent of our nation’s population in 1991 (Masters, 1991:104; Claborn and
Rainwater, 1991:1290) and is used extensively in crop irrigation, affecting all of our
diets. Preventing and reducing the contamination of our groundwater and improving our
cleanup efforts are therefore of dire importance to all of us.

To the USAF. Department of Defense (DOD) installations are responsible for a
significant amount of accidental groundwater contamination, and cleaning up these sites
is, therefore, the responsibility of the DOD. The US Air Force alone will spend an
estimated $7-10 billion on Installation Restoration Program (IRP) cleanups from 1992-
2002, and a “substantial portion of these costs will be associated with groundwater
contamination remediation,” (Adams and Viramontes, 1993:1-2; Vest, 1992). Seeking to
improve the effectiveness and efficiency of cleanup efforts is very much an Air Force
problem, and one which can be given significant attention without apology to the public

at large.
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Problem Statement

At present, the most common method for cleaning up a contaminated site is to
sink extraction wells at various locations, pump out the contaminated groundwater until
the concentration in the ground is deemed safe, treat the extracted water to remove or
make safe the contaminant, and return it to the environment (Adams and Viramontes,
1993). Models are used to predict cleanup times and costs, but often they fail at this task
(Travis and Doty, 1990:1465). Pulsed pumping is a technique being increasingly
investigated as an improvement to the standard pump and treat technique. It involves
turning the pumps on and off at calculated intervals to increase the average concentration
being extracted from wells, thereby increasing treatment efficiency (Hartman, 1994). The
pump-off period will hereafter be called the soak phase. Improved predictions for pump
scheduling could be critical to the success of this newer technique.

Any given failure of a model to predict could have many different causes. Two
behaviors that occur often and are difficult if not impossible to predict are failing and
rebound (Olsen and Kavanaugh, 1993:44). Tailiﬁg is defined as a slower than predicted
decrease in the concentration of contaminated water streaming from the extraction well,
especially at later time intervals. This obviously involves longer than predicted cleanup
times and higher than predicted costs. Rebound is defined as contaminant concentration
rising significantly from the level it was at when pumps were turned off. On occasion,
cleanups have been declared complete (with well heads even removed, etc.), only to

rebound years later to unexpectedly high (and hazardous) contaminant concentrations.
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This is frustrating for modelers and those tasked with cleanup, but it is more importantly
dangerous for groundwater consumers. The cause of these two behaviors is not known
for certain, but rate-limited fransport is frequently suggested (Adams and Viramontes,
1993:1-4). Present one-parameter rate-limited models do predict some of the long-term
tailing and rebound, but not all of it.

Tailing and rebound both could be generalized as inaccurate predictions of
concentration versus time. For this work, inaccurate is defined as causing significant
schedule deviations, significant cost overruns, or the unpredicted reappearance of
hazardous concentrations. The first major question is: Are accurate predictions even
possible? The second is: If accurate predictions are possible, what conditions and tools
will facilitate accurate predictions and are these predictions worth the effort?

There is another baffling behavior that will be investigated. Experiments to
determine “representative” rate parameters have found them to be time and pump-rate
dependent (Brusseau and Rao, 1989:56). This is clearly related to the inadequate
modeling of tailing and rebound described earlier. What is the cause of these
dependencies? Is there only a single rate-limiting process, but one which is time and
pump-rate dependent? Could the presence of multiple rate-limiting processes cause this

behavior?

Research Objectives and Limitations

The first major objective of this work is to investigate the predictability of rate-

limited contaminant transport if a range of different rate limitations are in fact present,
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represented by a distribution of rate-parameters (instead of the common, single
“representative” rate-parameter). To do this, a model is built to focus purely on rate-
limited transport and to compare the behavior of a one-parameter case to that of a case
assuming a continuum of rate parameters, defined by a continuous distribution function.
Also, comparisons will be made between the behaviors observed for various distributions,
including a bimodal. Assumptions concerning every other possible process will be made
in order to ensure that only rate-limited transport and simple dilution cause the observed
behavior.

The second and final major objective is to investigate the solutions obtained by
using a distribution of rate parameters in order to determine whether the presence of
multiple rate-limiting processes is a possible explanation for difficult to predict effects
such as tailing, rebound and the variability of “representative” rate parameters with time
and pump rate.

Others have used a distribution of first-order rate parameters. Connaughton (et al,
1993) modeled mass transfer using a multi-site (multi-rate, distributed) model where sites
were in parallel, but did not compare the resulting solution to that of a one-parameter
model. Heyse (1994) modeled mass transfer in a continuously-stirred flow cell with two
different distributed models, one like that of Connaughton’s and another where the sites
were in series. Although a one-parameter model was compared to the distributed models
in his work, experiments were limited in duration. Well before both of these researchers,

Villermaux (1974) modeled mass transfer in a chromatographic column using what
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appeared to be a distributed model with sites in parallel, but as with Connaughton’s work,
his solutions were not compared to a one-parameter solution.

In summary, the leffects (especially long-term effects) of using multiple rate
parameters instead of one representative parameter was not clear in the literature to this

author. The overall goal of this work is to investigate these effects.

Overview

First, an overview of general soil characteristics important to this work,
groundwater contaminant storage and transport concepts, and modeling will be given in
the Background section. In addition to a brief overview of concepts discussed and used
in following sections, a theoretical justification for using multiple rate parameters is
sought. In the Model Development section, governing equations for two contaminant
transport models will be constructed based on stated assumptions for a mobile/immobile
zone conceptualization and for a chemical conceptualization, using three different rate

parameter cases:

1. The unimodal (distribution of rate parameters) case,
2. The bimodal (distribution of rate parameters) case, and

3. The one-parameter case, (i.e. the case for most present rate-limited sorption
models)
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with an overview and analysis of distribution function choices. In the Solution
Approaches section, various approaches to solving the three cases are examined,
including a discussion of a clean flow approximation, pump rate changes, a soaking
phase, and solution uniqueness. In general, this analysis yields either a Volterra integro-
differential governing equation, or a Volterra (second kind) integral governing equation.

The Numerical Methods section examines three different classes of numerical
methods for both the Volterra integro-differential type and Volterra (Second Kind) type
governing equations. Error estimation, pump rate changes, soaking and reinitialization
are discussed there, along with a justification for the method of choice. In the
Applications section, the developed tools are used to examine various solution behaviors,
leading to the fulfillment of stated objectives. Finally, Conclusions and

Recommendations are given, along with perceived areas of uncompleted, related work.
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II. Background

Soil Characteristics and Groundwater Contaminant Transport Concepts

Generally, many soil characteristics can affect contaminant transport, and hence,
cleanup operations. Porosity, n, is the ratio of void volume to total volume. Saturation,
S, is the ratio of water volume to void volume. Volumetric water content, 0, is the
product of porosity and saturation, or the ratio of water volume to total volume.
Properties of soils are stated on the basis of the scale over which they are possibly variant
or invariant: microscopic, macroscopic and megascopic. For example, porosity may
appear invariant on the macroscopic scale (sometimes called the Darcy scale), while
varying significantly on the microscopic and megascopic scales. Finally, the
chemical/elemental constituents, surface properties, and distribution of solids in soil can
be important.

Typically, aqueous phase contaminants are easily cleaned up by the process of
advection. Advection is the movement of contaminant due solely to the mean flow of
water (Domenico and Schwartz, 1990:358). Cleanup operations usually involve pumping
groundwater out of contaminated sites at flow rates that allow uncontaminated water from
surrounding regions to flow through the site and evacuate a great majority of originally
present mobile water in a relatively short time (Adams and Viramontes, 1993). In
laboratory work, contaminated water is typically drawn into the experimental soil section,

and the concentration exiting the opposite end of the experimental section is analyzed.
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Both in laboratory experiments and in field work, when concentration versus time is
plotted, breakthrough curves (or BTC’s) are said to be generated.
The term breakthrough is used both in field and lab work. This is because

contaminant concentration typically stays nearly constant for a period of time. In the lab,

this time period is the time required for the first contaminated effluent to arrive at sensors.

In the field, this period is that required for cleaner flow from surrounding uncontaminated
sites to break through the contaminated region of interest, arriving at well-heads/sensors.
Once this period is over, sharp increases (in lab work) or sharp decreases (in field work)
in contaminant concentration follow.

In addition to advection, dispersion and diffusion within the mobile region can
effect the shape of BTC’s. Diffusion involves the movement of contaminant opposite
concentration gradients, and dispersion involves the spreading of contaminant due to
local variations in fluid flow velocities. The effects of advection, dispersion, and
diffusion, at least in the mobile region, are usually dominant in the short term as
compared to rate-limited sorption. This is evident in the tailing which occurs when
models do not account for rate-limited sorption: advection, dispersion and mobile region
diffusion are being modeled successfully, but rate-limited sorption does not begin to
dominate until the tailing appears in the longer term.

As we shall see in greater detail, a well-mixed situation as will be used, ignores
dispersion and diffusion in the mobile region, and reduces advective processes to simple

dilution. Because of this, the short-term regions of BTC’s generated by this work’s
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models are not intended to be accurate and are not important to the work. It will be the
longer term that will be of interest, due to rate-limited transport domination there.

The contaminants that often pose real cleanup problems are those in the solid
phase (sorbed included). Solids typically do not move with natural groundwater flow or
during pumping operations. They continue to supply contaminant to the mobile region to

allow removal, but at much slower rates due to the following processes.

Contaminant Storage

Contaminants are introduced into groundwater in a variety of ways and on a
variety of schedules. Sometimes exposures are short and highly concentrated, while other
times they trickle in over long, continuous periods of low concentration exposure.
Contaminants can enter the ground in various phases and change phase as they are
deposited or transported. Although this work is primarily focusing upon cleanup
behavior, adsorption behavior during deposition for a reversible process is clearly in view
also. It is this process which ultimately determines valid initial contaminant levels for
cleanup efforts. For reversible processes, conclusions about desorption behavior can be
equally applied to adsorption behavior.

Sorption and Immobile Regions. In general, we will investigate two possible
rate-limiting processes which could cause some of the inaccuracies in present modeling
techniques. Rate-limited refers to processes which limit the possible rate at which
contaminant can be removed from storage in the ground. This work is primarily
concerned with contaminant storage by two basic processes: adsorption and diffusion

into immobile regions. Adsorption is the process by which contaminant bonds to solid
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soil surfaces, and desorption is the breaking of these bonds. Although absorption is
normally included in the term, sorption in this work will be primarily referring to
adsorption. Adsorption bonds fall into three basic categories, with some subcategorizes
based upon slight variance in bond type:
1. Chemical, or chemisorption
a. Covalent
b. Hydrogen Bond
2. Electrostatic
a. Ton-Ion
b. Ion-Dipole
3. Physical
a. Dipole-Dipole/Coulombic
b. Keesom energy
c. Dipole-Induced Dipole/Debye energy
d. Instantaneous Dipole-Induced Dipole/London dispersive
energy
(Weber et al, 1991:501).
The strength of a given adsorption bond as well as the conditions under which it will form
or be broken is a function of contaminant type/phase, sorption site, and temperature
(Treybal, 1980). I suspect that pore water velocity can effect the bonding process also.
These bond types are presented as evidence of the fact that different types and strengths
of adsorption bonds are indeed possible for some contaminants.
Immobile regions are defined as regions of immobile but connected water. If

these immobile regions are indeed present, it is assumed that contaminant diffuses into

these regions. Thus, removal of contaminant from these regions can be rate-limited due
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to the diffusive process required. The existence and importance of immobile regions to
many cases is well established (Brusseau and Rao, 1989).

Equilibrium Sorption. If water with a given concentration of contaminant is kept

in stagnant contact with sorptive surfaces for a long enough time, an equilibrium
relationship is established. That is, the amount of sorbed contaminant eventually reaches
a constant value, at which time adsorption and desorption are in balance. The sorption
reaction rate determines the time required for equilibrium to be sufficiently established.
If sorbed mass , S, is plotted versus contaminant concentration, sorption isotherms are the
result (constant temperature is assumed). Most isotherms can be expressed by the
following:

S =KrC" 2.1)
(Weber et al, 1991:506). This form defines a linear isotherm when n=1, an approximate
Langmuir isotherm when n is appropriately less than one, and a Freundlich isotherm
generally. If this relation holds (with a constant n and K) for both adsorption and
desorption, the process is said to be singular. If isotherms are non-singular, or hysteretic,
some contaminant bonds permanently to the soil, rendering desorption impossible
(usually due to a chemical reaction). Finally, most isotherms are generated under
equilibrium conditions, eliminating rate-limiting effects. Isotherms which are linear,
singular, reversible, and produced under equilibrium conditions are said to be ideal. In

this work, isotherms are assumed rate-limited, but otherwise ideal.
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Non-equilibrium, Kinetic, or Rate-limited Sorption. For a given laboratory or

field situation, some conditions of flow for a given contaminant and soil do not allow
time for equilibration. Much laboratory and field investigation has proven many cases to
be rate-limited (Brusseau and Rao, 1989:41). Now we will summarize how these

processes are presently modeled, and how these models are used.

Model Construction and Usage

As was previously mentioned, models are typically built to produce accurate BTC
predictions for the purpose of cleanup scheduling, budgeting, and safety considerations.
Laboratory work also normally involves model construction for improved understanding
of the behavior being investigated. It is not the point of this work to argue for or against
the need for more accurate modeling. The possible importance of it is briefly mentioned
in the introduction and in this section. If it is found necessary to build more accurate
models, this work suggests one possible means of improvement. Since it is clear that
many situations prohibit the assumption of equilibrium (Brusseau and Rao, 1989:41),
non-equilibrium will be the primary focus of this work. But to better understand non-
equilibrium, a brief overview of how some past and present modelers have assumed
equilibrium is given.

Local Equilibrium Assumption (LEA). This assumption is made by many

modelers in building their solute-transport equation because of its simplifying effects
(Adams and Viramontes, 1993). Specifically, it involves assuming equilibrium is reached
“locally,” meaning in the discretized spatial regions of three dimensional transport

models. Often, isotherms of the form given in Equation 2.1 are used with n=1 (linear).
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Whenever it is valid, it greatly simplifies modeling without any noticeable accuracy

losses.

In order for the LEA to be valid, the rate of the sorption process must be fast
relative to the other processes affecting solute concentration (e.g., advection,
hydrodynamic dispersion) so that equilibrium may be established between the
sorbent and the pore fluid (Brusseau and Rao, 1989:41).

Most if not all contaminants follow a pattern of a short, initially fast period of
adsorption (due to fast sites which might allow local equilibrium) followed by an
extended period of slow adsorption (presumably due to slow sites for which the LEA is
invalid) (Wu, 1986:725). If the process is reversible, this pattern is duplicated during the
desorption process. Fast and slow here refer to the rate of kinetic sorption relative to
advection, primarily.

During laboratory experiments, when contaminant is introduced into columns or
cells of soil by sending it through in the aqueous phase, resulting BTC’s are either
symmetric or asymmetric (Brusseau and Rao, 1989). Asymmetries are almost always
caused by rate-limited sorption, the rare exception to this being when they are due
exclusively to hydrodynamic dispersion (Brusseau and Rao, 1989). Rate limitations in
the laboratory evidenced by asymmetric BTC’s are very common, and with “tailing” and
“rebound” in the field, attest to the widespread importance of rate-limiting effects to
sorption modeling.

The frequent reality of rate-limited sorption means the frequent sacrifice of
accuracy in sorption modeling whenever the LEA is made. This sacrifice may or may not

be called for, depending upon the relative importance of sorption compared to other
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processes and upon the level of accuracy required. Valocchi (1986:1699) demonstrated
that with inward radial flow, there is a range outside of which the LEA is valid, due to
slower fluid velocities. If a three-dimensional flow field is used in any given model,
knowing where the LEA could safely be made would save unnecessary complexity and
possibly computing time. If accurate sorption modeling is required, non-equilibrium, or
rate-limited sorption should be the starting point and the LEA made only when and where
it is carefully proven valid. Many researchers are going to great lengths to follow this
very advice, several of which have already been cited.

Rate-Limited Transport. There is not just one accepted way to mathematically or

conceptually deal with rate-limited sorption/transport. Non-equilibrium models can be
divided into two basic categories: chemical and physical (Brusseau and Rao, 1989).
Chemical. This class of models involves the hypothesis that sorption
sites themselves can be rate-limited, without assuming the_t presence of any rate-limiting
diffusion processes occurring in immobile regions (Brusseau and Rao, 1989). Most
assume two classes of sorption site: one rate-limited and the other at equilibrium (Nkedi-
Kizza et al, 1984:1124). The differences between sites are attributed to different
chemical/bonding interactions for one predominant soil content or sorption surface

feature (say limestone) versus another (say organic material). Here, the rate-limited sites

are typically represented by a single rate-parameter, k , as in the following expression for

a sorbed mass balance:

95(F) o>

=k [-F)K,cC,, (7)-5()] 22)
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(Nkedi-Kizza et al, 1984:1124,1129). Here, S is the total sorbed mass for a given class of
sites per total mass in soil, F is the percentage of equilibrium-controlled sites, and Ky is
the distribution coefficient for linear adsorption. This rate parameter for chemical models
is not derived from first principles using known physical or chemical constants (for the
contaminant, soil or solvent) but purely by curve-fitting experimental data (Brusseau and
Rao, 1989). Tildes are used here and in following equations for dimensional variables
because most of this work will be done in non-dimensional variables. This reduces
presentational complexity throughout.

Physical. With this type of model, mass transfer is hypothesized to be
rate-limited due to the presence of immobile zones (Brusseau and Rao, 1989). The
sorption sites in both the mobile and immobile regions are assumed to be at equilibrium,
but mass transfer from immobile to mobile zones is assumed to be a diffusive process
(Brusseau and Rao, 1989). This diffusive process is modeled using three basic

techniques:

1. Explicitly with Fick’s law (second order),

2. Explicitly using a semi-empirical first-order mass-transfer expression to
approximate Fickian diffusion (semi- because this first order rate parameter has
been successfully estimated from first principles using the diffusion coefficient
and an assumed geometry), and

3. Implicitly with the use of an effective or lumped dispersion coefficient that
includes the effects of sink/source diffusion, as well as hydrodynamic dispersion
and axial diffusion

(Brusseau and Rao, 1989:46).
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Although surface diffusion is possibly important, it is not investigated in this work.
Instead, diffusion through the immobile zone water is focused upon. The various sizes
and shapes of immobile zones are typically modeled by a single representative (mean)
size and shape. This technique, at least in the time frames experimentally tested, seems to
have stronger justification than the chemical model for a majority of contaminants and
soils (Nkedi-Kizza et al, 1982:475).

One advantage of this conceptual approach, as previously mentioned, is that rate
parameters can sometimes be reasonably estimated using a first-principles approach,
starting from known contaminant and solvent diffusion properties and assumed
geometries. The real advantage here is gained if laboratory experiments (especially long-
term) become unnecessary. Unfortunately, the approach has proven inapplicable to some
cases, and rate parameter estimates are not always accurate enough even when this
conceptual approach is proven valid (Brusseau and Rao, 1989).

If immobile zones are found to be of importance for a given contaminant/soil,
knowing their sizes and shapes would be helpful. Unfortunately, these sizes and shapes
are quite illusive. If their sizes and shapes were exactly known, the most rigorous way to
model the rate limitation would be to use a second-order, Fickian diffusion approach.

The real range and distribution of mass transfer rates would be best analyzed with this
approach using measured aggregate size and shape distributions. One researcher required

ten aggregate size classes (all spherically shaped) for accurate modeling (Cooney et al,

1983).
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The first-order technique described above was found to be the most common
explicit technique used, but the general argument for the presence of many mass transfer
rates based purely upon the presence of many different diffusion path lengths/geometries
holds for either explicit technique. At this point it is noteworthy that the first-order
chemical approach and the first-order physical diffusion approach are mathematically
equivalent, while the physical meaning of variables is different (Nkedi-Kizza et al, 1984).

When sorption in the immobile region is ignored, the first-order kinetic model for

physical diffusion yields the following immobile zone mass balance:

d im t ~ ~
Oim ca—f(t) = k[ Cn(F)- Cim(T)]- (2.3)

Once a given immobile zone geometry is assumed (spherical in this case), the effective
diffusion coefficient and geometry combine to yield the following estimated first-order
rate-parameter (termed the mass-transfer coefficient in the literature):

D6,
k= b';fgﬂ 2.4)

(Brusseau and Rao, 1989:56). Here, D is the effective diffusion coefficient, b is the mean
spherical aggregate radius, and f is the shape factor for transforming the spherical
diffusion model to the kinetic model. Even though this equation is the product of a first-
order kinetic model assumption, it is clear that both the diffusion coefficient and path
length associated with a given geometry assumption significantly affect mass transfer

rate. Large/thick aggregates cause slow diffusive transfer rates and small/thin ones cause

fast diffusive transfer rates.
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It is important to note here that the “representative” rate parameter is time and
pump-rate dependent (Rao et al, 1980; Brusseau and Rao, 1989:56). This work will
investigate this effect also. The lumped dispersion coefficient technique is not used in

this work, so this completes our overview of physical (diffusion) modeling techniques.

Summary

If immobile zones are proven important or sorption sites with different kinetic
reaction rates indeed exist for a given case, it immediately follows that different mass
transfer rates do coexist. This work will investigate how much variation in mass transfer
rates requires more than one rate parameter in the long-term modeling effort. It will also
investigate the relationship that this variation has to tailing, rebound, and the time and

pump rate dependence of the supposed “representative” rate parameter.
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IIl. Model Development

Goal/General Assumptions

The goals of this model need to be very clear: investigate rate-limited transport,
assume the presence of multiple rate-limiting processes, model these with varied mass
transfer rates, and minimize complexity. Both chemical and physical diffusion models
are used because these two models together include the widest range of contaminants. If
this work was only applicable to a small minority of contaminants, its usefulness would
be greatly diminished.

With the chemical model, rate-limited sites were assumed in parallel (rather than
in series as some researchers have done: Heyse, 1994; Brusseau and Rao, 1989:43) to
keep it similar to the physical diffusion model and to minimize complexity. The choice
of approach with physical diffusion is more difficult.

It is doubtful that second-order diffusion effects are important to the basic premise
of this work: simultaneously present rate-limiting processes causing multiple,
simultaneously present mass transfer rates. In addition, second order Fickian diffusion is
likely to inject significant complexity into the solution process. For these two reasons, a
first-order mass transfer rate for both models was assumed.

Because one-parameter first-order models have failed to model tailing and

rebound adequately in some cases, and because theory suggests the presence of multiple,
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simultaneously-active rate-limiting processes for many cases, a continuum of possible

rate parameters will be used.

Present Model-Building Technigues

Models that consider spatial effects typically involve using a spatial discretization
(an elementary volume) which assumes soil parameters of interest are somewhat constant.
This elementary volume is normally shrunk to differential size for the governing
equations, becoming finite in size upon implementation of the chosen discretization

scheme. All models involve doing a mass-balance on this elementary volume, setting the

. . . 0A
time rate of change of contaminant mass in the elementary volume, —, equal to the net

of

losses and gains through the boundaries plus or minus any sources or sinks. This time
rate of change of contaminant mass term is typically broken up into all the phases in
which a contaminant could be stored: possibly multiple solid, liquid, aqueous and
gaseous forms. For this work, there will be three storage phase possibilities: mobile
aqueous phase, immobile aqueous phase, and adsorbed solid phase.

The other side of the mass balance (losses/gains through the boundaries and
source/sinks) represents how mass moves between elementary volumes and whether or
not mass could be effectively created or destroyed (an example of this would be if a
contaminant becomes non-toxic upon undergoing a certain reaction, and we are only

concerned about toxic forms). Keep in mind that this work is not about mobile region
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contaminant transport, but primarilly transport of contaminant into and out of other
storage regions. Sources/sinks are also excluded in this work.

After this mass balance is accomplished, it is usually restated in terms of
concentration units. An example in the literature of this sort of model (without the
multiple rate-parameters), which considers mobile region contaminant transport in detail
is:

oC oS oC. 35S, 9%cC oC
S+ Fp—2t 40, — 2+ (1-F)p—21=6,D,—— " ~0,v,—"(3.]
m a'tj p at m at +( )p at azz v Z ( )

)

(Nkedi-Kizza et al, 1984:1123). Here, F’ is the proportion of sorbed solid in contact with
mobile water, D,, is the apparent diffusion coefficient, C;,, is a volume-averaged
immobile concentration, and v,, is the average mobile pore water velocity. This mass
balance assumes F’, 8 and p to be constant with time (an assumption made in this work
also), and 0,, and D,, to be independent of spatial position. The first two terms on the
LHS represent the change in contaminant mass storage in the mobile region with time
(allowing for aqueous and sorbed phases). The second two terms represent the change in
contaminant mass storage in the immobile regions with time (again, allowing both
aqueous and sorbed phases). The terms on the RHS represent dispersive/diffusive
transport and advective transport respectively. Keep in mind that C here is a function of

both time and spatial position.
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Overall Assumptions

Since the main goal of this model is to single out rate-limited transport and
prevent any other process from obscuring the clear observation of its effects, several
unrealistic assumptions are made. First, a well-mixed cell assumption is made to
eliminate all of the spatial dependencies. This means that once contaminant mass
exits/enters immobile regions, desorbs from/adsorbs to a solid surface, or enters/exits the
volume of interest by in-flow/out-flow of aqueous contaminant, it instantaneously mixes
to cause an increase/decrease in contaminant concentration throughout the volume of
interest. This assumption allows the elementary volume to encapsulate the entire region
of interest, rather than just one small spatially-discretized portion of it. The mobile
region is therefore represented by one volume-averaged concentration that is assumed to
be only time-dependent. The immobile regions will be represented as in Equation 3.1, by
volume averaged concentrations.

Second, the boundary conditions for the region of interest, having a mobile water
volume of V,, is that mobile water is being removed at a flow rate, O, and water of a
constant concentration is entering the region at the same rate. This assumption yields the
following for the RHS of Equation 3.1:

MassFlowIn — MassFlowQut _
\%

-‘;Q—em(c0 -C,), (3.2)

m
and for clean water flowing in from surrounding regions (Cy=0),

MassFlowIn — MassFlowOut __9 0,C,. (3.3)
vV V

m
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This will represent contaminant mass transport across the boundaries of the region of

interest.

A First-Order, Physical Model

The Dimensional, One-Parameter Model. Since Equation 3.1 is a physical

model, we will start with that type. The first-order rate, immobile zone mass balance is:

a¢; 9S;
0, R+ (1-Fp—L=k'(C,-C,,). 34

Notice that in this form, the rate parameter, k’, converts concentration difference units to
units of time rate of change of contaminant mass stored in an immobile region per total
volume of interest. The first assumption here is that since diffusion through immobile
water is assumed to be the main rate-limiting process, there is assumed to be no sorption
occurring in either mobile or immobile water (i.e. Sp=0 and Sin=0). This assumption is
made to ensure that equilibrium type behavior is only observed due to immobile zones
that could, in fact, be rate-limiting given the proper conditions.

This does minimize overall contaminant storage capacity, compared to sorptive
possibilities, but it is the main rate-limiting process that we desire to focus upon. Note
that after the completion of this work, it was realized that equilibrium sorption in the
immobile zones effectively lowers each rate parameter, and depending on the
contaminant, could slow mass transfer significantly. But, since our non-
dimensionalization process will be designed to scale the model to show behaviors for any

given average mass transfer rate, the initial ignorance of the effects of this assumption
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should not effect any conclusions drawn from this model. It remains clear that

equilibrium sorption in the mobile zone would only serve to mask rate-limiting effects.
You might recall from Equation 2.4 that £ includes 6, but for our usage we

desire not to include it. This rate parameter without it will be denoted k. So, with the

above stated assumptions the mass balances for immobile and mobile regions become

(with dependencies shown):

3C;n(F) - -
Oz = 0 imk[C,n(T) = Cin(F)]. (3.5)
aC,(7) IC,(T)  0fF) .
Oma—?+9im 37 =- v GmCm(t) 3.6)

m

This is the model that is to be used for the one-parameter case.

The Continuum of Rate Parameters/Immobile Zones. The first assumption for the

case of a continuum of rate parameters is that the rate parameter, k, defines the class of
immobile zone being described as well as 0;,,. This means that water content is constant
for all immobile zones with a given rate parameter. This is not overly restrictive in that
the volume of immobile water is very likely to have some relation to the diffusion
pathlength, assuming the same geometry is being compared.

The second assumption involves the definition of the distribution. If the overall

mass balance for all immobile zones was to be written as a summation, it would be:

(3.7)

Z (9 im )i - (9 im )tatal
i=0
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Converting this to an integral yields:

A T, \0Cim(k.T)
i O T
(3.8)

]f 8 (k )dk =(9 im )total :

Note that g here has units of 6 per unit k. The bounds of integration here are the bounds
of k, such that if upper and lower limits of k were to be set differently, so would these
bounds. So to summarize, the overall mass balances for the distribution of rate

parameters (unimodal) case become (with dependencies shown):

,,,,(k) (k 1)_ =0 4 (K[ (Con(F) ~ Cim(.T))) (3.9)

a 9C;, (k.7 o(r -
+J'g( y—m et ‘"’( ) =—Q6mCm(t). (3.10)
Vm
Non-Dimensionalization. The following seven relations were used to non-

dimensionalize the model:

G- ) St
()=t x(k)_kﬁ
" 3.
)=t —s@fZ )= 2 o
( ’m)total ’ Vi kr,
— (e’m)total
O
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Note that during this process, the non-dimensional distribution is now normalized
(ie. jo f (k)dk =1). The subscript, r, denotes a constant reference value for the given

variable. These reference values, when used to non-dimensionalize this linear set of
equations, accomplish a very useful purpose, as the following example demonstrates. If
x, y and A are assumed equal to one, solutions can be explored for various values of p and
v (minimal set of independent parameters), and then reference concentrations and rate
constants can be chosen to scale all experiments to a given contaminant and set of initial
conditions. The appropriate variable substitutions and chain-rule derivatives result in the

following set of governing equations:

I(a1)=Ax() - y(A.1)] (3.12)

#(1)==p(e)x(t)=v [ f(R)5(h ) (3.13)
Dots above variables here represent the first derivative with respect to non-dimensional

time. These are the two governing equations on which this work is based. The identical

non-dimensionalization for the one-parameter case yields:
3(t) = ux(t)- y(1)]. (3.14)
x(t)=—p(t)x(t)-v (), (3.15)
where [ here is used for A because in our comparisons, the mean of the distribution of A’s
(f(A)) will be used for this case. This one-parameter case will be used not only to

illustrate the effects of the one-parameter assumption, but also as a benchmark problem

for testing numerical methods. It has an analytic solution and can be solved by the same
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numerical techniques to be used for the distribution of rate-parameter cases which do not

have analytic solutions.

A Chemical Model

Dimensional Form. A chemical model will now be built with very similar

assumptions. From the same work as Equation 3.1, typical starting mobile water and

sorbed mass balances for this model are:

aC, . 98, 3S 3%C oC
Op—Z+p—atp—==2=D,0,—2-v,0,—==, 3.16
mor  Por TPor S P B P4 (3.16)
S = FK,;C,, (equilibrium sites), (3.17)
a5, aC,
—=FK, —*, 3.18
37 497 G-18)
S, =(1- F)K,C,, (kinetic sites if equilibrated), (3.19)
25, _

57 k[(1- F)K,C,, — S, |(kinetic site first order rate law)  (3.20)

~

(Nkedi-Kizza et al, 1984:1124). Here, S; is sorbed contaminant mass per total mass of
solids in the volume of interest on sites that instantaneously equilibrate and S is sorbed
contaminant mass per total mass of solids in the volume of interest on Kinetic sites. The
fraction of instantaneously equilibrating sites is F. Notice that the first-order rate
parameter here has different units than previously, and hence its symbol is different.

The same assumptions are made as previously about the RHS of Equation 3.16: a

well-mixed cell, volume-averaged concentrations, a total pumping rate, Q, and clean
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water flowing in. With these assumptions, and upon substituting Equation 3.18 into 3.16,
the aqueous phase mass balance can now be written:

ac, 3S, 0
Som 45822 Y g
aF P Ty

m

®,,+pFK,) C,- (3.21)

m

Non-Dimensional Form. With the following non-dimensional transformations

and new definitions of v and p,

Ca(F (1))

o e 0

C, - (1-F),C,
~_ k N
k(k)=ﬁ : ((7)=7k, , (3.22)
v = p(l - F)Kd (t) — Q(?(t)pm
em'l'pFKa' ’ Vmigr(em+pFKd) ’

Equations 3.14 and 3.15 are the result. This demonstrates for the one-parameter model,
that a certain set of assumptions can be made to make a chemical model mathematically
equivalent to a physical first-order rate model in their non-dimensional forms.
Coefficients and variables have different meanings, but ultimately the actual behavior
being modeled can be equivalently done with either conceptualization.

A Continuum of Rate Parameters. A slightly different distribution function

definition is required for the chemical model. The simplest way to incorporate this
continuum of rate parameters is to do so in the non-dimensional form. If ) is now

defined as the portion of the total non-dimensional sorption rate ( () rorat ) AL Kinetic sites

with non-dimensional rate-parameter between A and A+d\ per unit A, Equations 3.12 and

3.13 are the result. So, we find at least for this given set of assumptions that these two
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approaches, first-order chemical and physical, with an assumed continuum of mass
transfer rates are mathematically equivalent in their non-dimensional forms. This
demonstrates that this model is widely applicable because it accomodates the possibility

of multiple mass-transfer rates for either the chemical or physical conceptualization.

Distribution Choices

Reality. Although theory and experimentation strongly suggest the simultaneous
presence of multiple, rate-limiting processes, a “representative” rate parameter for each of
these processes is evasive. If a continuum of rate-limitations is, in fact, present, the
distribution is unknown for any contaminant for which it is applicable. No one has
successfully measured the shape of a given contaminant’s rate-parameter distribution (as
far as this author knows), although Heyse (1995) is presently working on this.

The diffusion-based physical model suggests the usage of a distribution somehow
related to the distribution of immobile zones and their associated diffusion lengths.
Lognormal distributions are a good experimental approximation to the sizes of aggregates
in many cases (Gilbert, 1987:152). It is therefore likely that the lognormal distribution is
somehow linked to the actual distribution of mass-transfer rates for cases where diffusion
in and out of aggregates filled with immobile water is a rate-limiting process of
importance.

For the chemical model, multiple discrete mass transfer rates makes better
theoretical sense than a continuum. In spite of this, conclusions associated with an

unknown continuous distribution should be equally applicable to an unknown discrete
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distribution. Also, most if not all conclusions associated with using a single parameter to
represent multiple mass transfer rates can be based on the behavior of models that use
either a discrete or a continuous distribution of rates.

Practicality. One general quality of the distribution function to be chosen
determines its practicality for this usage: integrability in closed form of various moments
of it. The Gamma distribution was found very practical, because all desired integrals
were found analytically, and in closed-form in most every case.

Flexibility. One additional criterion for this choice was that the distribution’s
shape, including its mean, standard deviation, and minimum values, be flexible in
enabling desired variations. The three-parameter Gamma distribution has the desired
flexibility and closed-form integrability. It also can approximate the lognormal
distribution with the appropriate choice of parameters. Figure 3.1 illustrates the

distributions mentioned.

The Gamma Distribution (Three-parameter). This distribution is of the form:

i - o1 —(l-— )
f)= Br(a)(TY) CXP[ BY} >7) (3.23)
0

where —eo <y <eo, >0, [ >0,and
I'o)= J:(pa_l ¢®do (Gamma function, normalization constant). (3.24)

Sometimes B here is defined differently (as the inverse of this parameter: compare -

Connaughton, 1993:2399 to Gilbert,1987:157). This distribution’s mean is p=03+y, and
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Figure 3.1 Lognormal and Gamma Distributions,
1
Each p=1 and o=(3) "%,
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Figure 3.2 Various Possible Shapes of the Gamma Distribution.
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its standard deviation is o= ~/o. . Its widely variable shapes are seen in Figure 3.2,

where the mean of each distribution is p=1.

A Bimodal Distribution Allowed. This case only involves a slight modification to

the variables found in the governing equations. A new variable is needed to specify the

percentage of the total found in each distribution, d;:

F0)=di 1)+ (1= ) £, 0. (:25)

Here, f; and f> are Gamma distributions combined in a weighted fashion (according to d;,
with 0<d;<1) to obtain a normalized bimodal distribution. This change retains the same

governing equations and distribution integrability while increasing distribution flexibility.
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1V. Solution Approaches

Note that throughout the rest of this work, although the chemical model yielded
the same non-dimensional equations, all terms and discussion will favor the
mobile/immobile zone conceptualization. The correlation between these two types of
models would be useful for all discussions presented here, but time prevented the
inclusion of this.

The first step to a solution is to pick a solution approach. An approach that makes
sense and is necessary to get to various final forms is to solve the immobile zone

governing equation with an integrating factor. The unimodal case will be handled first.

Integrating Factor for Immobile Zones

This technique is summarized with the following four steps:

y(A,t)= X[x(t)— y(k,t)],

9¥+ Y0 = x(OM,
“.1)
d
g[y(k,t)em] = x(t)h &M,
y(?»,t)ex’ - y(A,0)= J;; x(s)A eMds,
y()=3y(h0)e ™ + [ (she M. 4.2)

First, Equation 3.12 is substituted into Equation 3.13, then the above solution will be

inserted to yield the following integro-differential equation:




()= -p()x(t)-v ] f (?»)?»[x(t)— y(2.0)e™ - [! x(s) e"‘[’"s]ds]dk (43)

If the order of integration is switched, and we define the following terms:

p= [ f (b,
q(t)= p()+va,
oo 4.4)
w(t)=v [ F APy (R.0)e M dh,
je=s)=v[ )2 Ml
our integro-differential equation becomes:
#(1) = =q(0)x(e)+ w(e)+ [ x(s)i(e - s)ds 4.5)

With the three-parameter Gamma distribution defined earlier, and an initial condition of

y(A,0)=y, the integrals become:

= fONIN=0B +y,

vl —At (M+B'Yr)e_yt
w(t)=v [ f (Mo e ™ dh =vyo—a:Bt)T,

. (4.6)
j©)=v jo FO)AZe M,

v[u2 +o BA(1+2y1)+v%1 2(2[3 + ]32)]6—71
- [1+ BT](Hz

Recall that the distribution is defined to be zero for 0< A <y. Mathematica was used to

obtain these closed-form integrals, using the change of variable: z=A-y (see Appendix A).
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The bimodal case requires several different variable definitions:

w= [, f1 N,
M= f £, (Adr,
m=diy+(1=di)y,
wi(O)=v] " 1M (A0)eHan,
wa(t)=V[ " £,y (A0)eMah, 4.7)
w(t)=diwi(t)+ (- d1)wa (t).
@)=V i,
Jo (T) =vj: fo(MA2eMan,
i@)=dii@)+(1-d1)jr ).

Other than these definitions, the bimodal case is equivalent to the unimodal case.

Integrating Factor for Mobile Zone

Generally, the integrating factor is:
IntegratingFactor = ej q(t)dt , (4.8)
but if g is assumed constant with time, the integrating factor, with the definition of W is:

IntegratingFactor = ¢4,

‘ 4.9
w(t)= J.o w(s)e? ds. (*+9)

This integrating factor yields:

x(t) = 4! {x(O) + W(t)}+ J‘(; |:e—4(t—s) j;x(s’)j(s - S')ds'}ds. 4.10)

Reversing the order of integration and defining new terms yields:
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x(t) =e
This form could easily be altered to match the general form of a linear Volterra integral
equation of the second kind, and it also includes a difference kernel. The importance of
this is discussed in the solution uniqueness section. Allowing p to change with time

makes calculating both proper forms of W and J a numerical endeavor instead of closed-

form integrals.

T'=t-s,

T=t—¢,

@)= [ i -)e T av,

Analvtic Solution for One-Parameter Model

The one-parameter case, Equations 3.14 and 3.15, has an analytic solution given

by (see Appendix B for the details):

z=\/(u—p)2+uv(2u+2p+uv),

1
c1= 2—Z[xo(—u+p+ v +2z)—2y,uv |

1
c2 2z

[xo(u—p—pv +2)+2y,uv]

1
3= [o(k =P +2)-2x0m]

c4=
x(t) = ciexp

J’(t ) = ¢3€Xp

[ —(w+ p+uv+z) |
2

[—(u+p+uv +2)t ]

2

1
Z[yO(—” +p+ v +2)+2xo1}

4 epexp ~(L+p+pv—z)
- 2 =
+ oeexp —(u+p-|2-uv -z

4.4

—qt {x(0)+ W(t)}+ J.(; x(s')J(t - s')ds'.




where W is defined in Equation 4.4. It must be remembered at this time that if L is a
function of time, (as some researchers claim: Brusseau and Rao, 1989:56; Rao et
al,1980a; Cussler, 1984), this approach would have to be modified by changing the

integrating factor to:

IntegratingFactor = eJn()ar (4.14)
Initial conditions must be reset anytime p is to be changed to a new constant value. This
solution was computed in the main code (Appendix G), and is algebraically arranged this
way to minimize calculations within an iterative loop. The constants and even the

coefficient of # in each exponential could be calculated outside the loop, and would only

have to be recalculated at pump changing times.

Clean Flow Approximation

Another solution approach chosen assumed the pump rate was high enough to
ensure that x<<y for at least some amount of time. This physically means that clean water
is assumed to be passing all immobile zones to determine mass-transfer rates (the best
possible mass transfer rate from immobile zones). Under these assumptions, the
governing equations and corresponding solutions are (assuming constant pump rate):

(A1) = =Ay(A,1),

i(t) = =px(t)=v [ f )M (h)Jdn, (4.15)
Y1) = y(A.0)e™,

*(t) = 7" [x(0)+ I w(s)epws} 4.16)
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Here, w is the function defined earlier in Equation 4.4. Equation 3.23 defines o to be
positive, and if it is an integer, this integral can be evaluated by recursive integration by

parts, using the relation:

ax _ ax ax
je—dx= I &7 a je dx, (4.17)
xm m_lxm—l m—1 xm—l

until the final integral is of the form:

o S
Elz)=| ers. (4.18)

Mathematica was unable to accomplish this process, so it was completed by hand and a
Mathematica module was written to accomplish it (using the built-in ExpIntegralEi[z],
see Appendix C for the details on this module and the function defining the clean flow
approximation). Non-integer values for o are assumed to yield a final integral that
requires numerical approximation (just as EI does, though a built-in Mathematica

function would be unavailable).

Pump Rate Changes/Soaking

Here, problems associated with pump rate changes and soaking, specific to
solution approaches will be discussed. Problems specific to numerical methods will be
discussed in the Numerical Methods section.

The General Integrating Factor for the Mobile Region. The soaking phase is a

definite requirement in this work to show rebound differences between different models,
and it had to immediately follow a given period of pumping (requiring a mid-experiment

change in pump rate). It was also a requirement to demonstrate pulsed pumping
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concepts. As was mentioned previously in this section, any solution utilizing an
integrating factor for the mobile region, (solution approaches yielding the Volterra
integral equation and limiting pump-rate solution) assumed a constant pump rate.
Clearly, a soaking phase is incompatible with the clean flow approximation. (A pump
rate of zero is clearly below the threshold value for a valid clean flow approximation!)

It was briefly pointed out that a different integrating factor than was used would
be required if pump rate was a function of time. If this general form for the integrating
factor (Equation 4.8) was used to accommodate pump-rate changes, closed-form
integrations would be impossible for these solution approaches, leaving only numerical
options for these integrations. Avoiding numerical approximations enhances accuracy
and usually reduces computation cost. Therefore, close-form integrations are sought
when possible.

The One-Parameter Analytic Solution. This solution also assumed a constant

pump rate, so pump rate changes had to be dealt with as initial conditions. The solution
was valid until the pump change time, then the pumps were assumed to change
instantaneously. The x and y values at pump change time were then used as initial
conditions to a new solution, with a new “constant” pump rate. This process of starting
with new initial conditions is termed reinitialization. There are problems associated with

this process for numerical methods, to be discussed in that section.
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Solution Unigueness

To investigate solution uniqueness, the solution approach involving an integrating
factor for the mobile region will be examined. This approach led to equations 4.12 and
4.16, which are easily manipulated into the general form of a linear Volterra integral

equation (second kind). In Yosida’s notation (1991:145), the general form is:

F(5)=0(s)-1[ K(s,)o(r)et, (4.19)
where A is a constant and not the rate parameter, f is a known function, and @ is the
function to be found. Yosida and others have proven that this general form has
“essentially only one solution” and that solution, when examined based upon a series of
iterated kernels is “almost uniformly convergent.” (Tricomi, 1985:10-15; Yosida,
1991:145-147; Linz, 1985:29-35) The fact that ours also includes a difference kernel also
contributes to uniqueness. Essentially, this form gives a great deal of assurance to the
existence of a unique, bounded, non-zero solution. This assurance is applicable to any

forms preceding it (i.e. other approaches to the same system of differential equations).
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V. Numerical Methods

Integro-Differential Equation

The first numerical method attempted was applied to the Volterra integro-
differential equation, Equation 4.5. A short experiment was conducted with forward and
backward Euler methods in order to facilitate the construction of a trapezoid integration
method. The program built using this method became the workhorse for much of the
analysis.

Trapezoid Method. This implicit method is best summarized by the following

sequence, which transforms the integro-differential equation into simply an integral
equation (not using the integrating factor):
q=p+VH,
z(t)= J;: x(s)K (s,1)ds,
H {t, x(t), z(t)} = —gx(t)+w(t)+z(),
x(t)= H{t,x(t).2(t)}:

First, & will be defined as a non-dimensional time step, and Z and X will be defined as

(5.1)

approximations of z and x. After integrating over one time step, #,.1 to ¢,, we obtain:

x(tn) = x(tn-1) + J‘:1 H {s, x(s), z(s)}ds ) (5.2)

With initial conditions of Zy=0 and Xo=xo, both z and the integral in Equation 5.2 may be

replaced by a trapezoid approximation:
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h n-1 h
Zn= Ex(to)K(to vtn)+ hZ x(t:)K (titn) + 2 Xt )K (tn 1)

i=1
h
Xn= Xn—l'*'E{H(tn—l’Xn—l’zn—l)"'H(tn’Xn’Zn)} (5-3)
n=12,...,

(Linz, 1985:178). This is easily seen to be two equations in two unknowns, (Z, and X,)
with an implicit, algebraic solution. Although this technique has third-order local
truncation error on one step, Z’s composite format yields a second-order global truncation
error (Isaacson and Keller, 1994:316; Burden and Faires, 1985:164). This was proven for
the one-parameter case: error was proportional to R (see Appendix D for details of this).
It was demonstrated for the unimodal case using uncertainty estimation in the same
appendix.

Multistep Methods. Multistep methods follow the previous general procedure,

but use higher order, interpolatory integration schemes to approximate both integrals
(Linz, 1985:178). Multiple starting values are required for these methods, and numerical
instability is possible (Linz, 1985:178). Though this technique was attempted using
starting values for both the one-parameter and one-distribution cases from the analytic
one-parameter case solution, no working code was finished.

Block-By-Block Methods. This technique involves initially the same procedure

as multistep methods, including the usage of higher order integration schemes. However,
it uses intermediate points (between nh and (n+1)h) and some form of interpolation to
generate multiple equations and multiple unknowns. These unknowns are typically found

in a block of several by solving the equations simultaneously, hence the name.
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An example of this method would be to use Simpson’s rule and quadratic
interpolation t(; generate two equations in two unknowns. Linz (1985:186) claimed that
this was easily proven to be a fourth-order technique. Fourth order accuracy was obtained
with an easy test case having only one integration involved, but the interpolation scheme
inserted no error due to the solution being a constant: f{x)=1 (Linz, 1985:118-120).
Although the integration scheme is locally fifth-order, and globally fourth in its
composite format, the quadratic interpolation is only third-order (see Appendix E for this
proof). I claim that the technique is globally second-order due to the usage of the
quadratic interpolation formula twice on each step. This was demonstrated with a simple
test case, and not the actual model (see Appendix F). A higher order method could no
doubt be designed, but the accuracy was not necessary. Because the efforts involving
quadratic interpolation only gave promise of second-order accuracy, the same order
available already in the previously coded trapezoid scheme, these efforts were abandoned
before ever achieving higher order accuracy with a more involved scheme.

Pump Rate Changes/Soaking/Reinitialization. In solving the integro-differential

equation, the only reinitialization required was with the analytic solution of the one-
parameter case. The accuracy of this process was quite important as it was being
compared to the same case being solved numerically to closely monitor error growth. For
output purposes only, y(A,f) was found at discrete A‘s. This gave important information

about the soak phase redistribution of contaminant.
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Volterra Integral Equation (Second Kind)

This approach has promise of better accuracy for a given step-size because it
appears to involve the numeric approximation of only one integral instead of two.
Although the integrals associated with it (when the Gamma distribution is used) are a bit
more cumbersome, computationally, and involve approximation of exponential integrals,
the method, without other complications, could still be expected to yield better accuracy
per step. This method is made much more tractable by choosing o (Gamma distribution
shape factor) to be an integer, but this is of minimal consequence; non-integer values
were not really necessary for this work.

The main disadvantages of this method, associated mostly with pump changes,
have been alluded to in the previous section. It was previously poiﬁted out that any
method using the general form of integrating factor for the mobile zone (Equation 4.8)
required the numerical evaluation of all integrations otherwise feasible in closed-form.
This is only one possible solution to pump changes for this method. Another way to
accommodate pump changes is to reinitialize each time the pump is to be changed, as was
discussed for the one-parameter case. Unfortunately, this too forces numerical evaluation
of otherwise closed-form integrations, unless an integrable (closed-form) interpolating
function could be found for y(A,0) at each reinitialization. I claim that these problems
associated with pump changes would minimize accuracy benefits of this method. In fact,
total error could be worse, because more actual integral approximations would be

required than for the integro-differential equation, after a pump change.
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Because the general approach to integral equations is nearly identical to integro-
differential equations, the applicable numerical methods fall into the same categories:
trapezoid, multistep, and block-by-block methods. Although none of these methods were
ultimately applied to the Volterra equation, some of the complexity was faced in

obtaining the clean flow approximation. The same integral was accomplished there.

Justification for Choice of Method

As was previously mentioned, pump rate changes had to be dealt with carefully.
Any method attempted was faced with a jump discontinuity. The trapezoid method as
applied to the integro-differential equation maintained stability as long as the pump rate
was constant on a given step. This involved the assumption that the rate change was
instantaneous at the end of a step such that the old value for the next step was just the
previous value, but the pump rates (old and new values for the new step) were now at the
new value. This was clearly the easiest method to deal with pump rate changes.

Because soaking after a pumping phase involved a pump rate change (from non-
zero to zero), soaking was clearly easier with the aforementioned trapezoid method. The
clean flow approximation was clearly invalid for a soaking phase, because a pump rate of
less than 10 was found to invalidate it, and pump rate was assumed constant for it (as
previously mentioned). It was therefore useless for pulsed pumping also. Although
dealing with the Volterra held initial promise of better accuracy per step, the complexity
was a hindrance. Ultimately, due to time constraints and previously stated reasons, the

trapezoid method was applied to the integro-differential equation as the overall method of
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choice. However, much was learned and demonstrated with the clean flow
approximation. If accuracy ever became more critically important, a higher order method
would probably be applied to the integro-differential equation. In that case, solving the

complications associated with pump rate changes would be challenging.

Error Estimation

There are two approaches typically used to estimate or bound error values, and a
third was devised for this work. The first is the rigorous theoretical approach which
delves into the heart of numerical method design and carries every possible source of
error to the final result. Such an approach is intractable for our system. The second is
simply to compute the same sequence of values using a sufficiently smaller step size, and
observe the change in the solution. This makes sense because it is a very safe assumption
that the error for the first computation is going to be orders of magnitude larger than the
second. This is what defines a sufficiently smaller step size. This equates to the
assumption that the difference between the two computations very well approximates the
true error of the first computation. This method was applied in this work.

It was also noted in the model development section that the one-parameter case,
although it had an analytic solution, could be solved numerically by the same methods
applied to the one-distribution and bimodal cases. As a third approach, I hypothesize that
the exact error in the one-parameter case, which can be easily calculated, is a good
benchmark test of error growth for two basic reasons. First, round-off errors and integral

approximation errors are very nearly identical in theory, since all the cases when solved

5.6




numerically involve the same numerical method with only minor differences in their
defining functions. Second, at least for the earlier time frames, all cases yield very
similar numerical results.

Even though this technique involved nearly doubling the numerical computations,
it fit very efficiently into the algorithm and proved a very useful addition to the program.
Throughout the applications section, error estimates will be referenced as originating with
this technique or the second mentioned above. The second method mentioned (using a
significantly reduced step-size to estimate uncertainty) is probably better at absolute error
estimation than the third (assuming error in one-parameter case approximates error in

distributed cases), so it will be used as much as possible.
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VI. Applications

Uncertainty of Numerical Solutions Displayed

All numerical solutions displayed have a standard criterion applied to them
concerning uncertainty. Unless otherwise noted, step size was chosen to render estimated
uncertainty negligible (five orders of magnitude smaller than the solution itself in most
cases). This estimate was obtained by the numerical solution of the one-parameter case,
for which exact error was calculated. Typically, #=0.01 was sufficient to accomplish this
uncertainty order of magnitude goal, so deviations from this step size will be noted. On
several occasions, this estimate of uncertainty was tested with the smaller step size run to
estimate the decimal place of change (hence the estimated decimal place of uncertainty,

as previously discussed also).

Usage of xg, yp_ Distributions, and Distribution Mean, 1

In this work, xg, yp, and pt were kept at unity for solution purposes. Reference

values may be chosen in order to scale the solutions to a wide range of dimensional, field
and laboratory scenarios. Also, x and y represent fractions of the reference concentration.
The solutions investigated assume equilibrium has been established between x and y
before the simulations begin (they are equal at unity). The model could have easily been
used to investigate soaking adsorption (or storage in immobile regions) by starting y at

zero, or to investigate time required during soaking for equilibrium to be established by
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starting x at zero and y at unity. No contaminated fluid was allowed to enter the region of
interest from surrounding regions, but retaining this possibility in this model is quite
simple.

Since A was defined during non-dimensionalization by Equation 3.11 as a ratio of
the actual rate parameter to a reference value, a unity value of L was used throughout this
work. In summary, for all solutions displayed, the initial conditions were x=1 and y=1
and a distribution mean of pu=1 was used.

Since the three-parameter Gamma distribution, with parameters of:

a=3

B=1/3,

=0 (6.1)
p=of+y =1,

produced a distribution quite similar to the lognormal distribution, these were used,

unless otherwise noted.

Variations in v and p

The first observation to be made about these two adjustable parameters is that they
have similar effects upon the solution after rate-limited transport begins to dominate
(after the break in logarithmic slope): that is, increased pump rates do something similar
to decreased v ’s as illustrated in Figure 6.1. Ultimately, neither seems to affect the
logarithmic slope after rate-limited transport begins to dominate, but both affect the

concentration at which this rate-limited transport domination begins to occur. Pump rate
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p=10, v=0.1
p=40, v=0.1

05¢

0.1¢
0.05¢

0.01¢
0.005¢

x(t)

0.001}

Figure 6.1. Effects of Changes in v and p (One Parameter Solution)

increases cause rate-limited transport domination earlier and at lower concentrations, and
an obviously increased logarithmic slope during advection domination. This last
observation is true even when there are no immobile regions because advection is really
only causing dilution due to perfect mixing, as mentioned earlier. Decreases in v cause x
to follow the same dilution slope during advection domination (due exclusively to pump
rate), but follow it longer to a lower concentration.

In summary, advection (dilution) is dominated by rate-limited transport at the
level-off point, the time and concentration for this point being affected both by p and v.
The logarithmic slope after rate-limited transport domination begins is constant for this

one-parameter case. But, as we will see later with more clarity, this is only true for the
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one-parameter case and possibly a certain class of distributions to be investigated (with
non-zero Y). In any case, at least the starting logarithmic slope seems to be primarily a
function of the distribution case, somewhat independent of p and v.

After examining both field and laboratory data, and conferring with an expert in
the field of groundwater hydrogeology, (Heyse, 1995), I observed that most BTC’s have
starting regions where advection dominates. Therefore, Very few solutions were
investigated for pump rates and v ‘s for which there is no advection domination period.
The trapezoidal code in Appendix G calculates this period for the analytic solution so that
the output scheme can sufficiently follow the curvature at this point. The point was
simply calculated by setting both exponential terms in Equation 4.13 equal to each other,
and solving for the time which makes the equality valid. A negative value output
signifies that advection never dominates.

‘These observations determined the minimum pump rate to be investigated. As

mentioned previously, a period of advection domination is common, so the pump rate at

Table 6.1. Non-Dimensional Pump Rates, p, and v Combinations
for No Advection Domination

Water Content Ratio, v Non-Dimensional pump rate, p
1.0 2.0
0.5 1.5
0.1 1.1
0.01 1.01
0.001 1.001
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which this period became minimal was used as the minimum pump rate. Table 6.1 gives
selected values of p and v for which there is no advection domination. It appears from
this table that an approximate rule of thumb for no advection domination (using the given
initial conditjons and distribution) is: p<1+vV.

If it is known that advection does not initially dominate for a given scenario,
smaller pump rates should be investigated. Heyse (1995) estimated that a typical value
for v is 0.1. Ball and Roberts (1991:1241) have estimated from 0.004 to 0.2 for a similar
constant. For this work, unless otherwise noted, a v of 0.1 will be used.

Because the clean flow approximation was easy to determine, its use will be
maximized. This equates to using it at all pump rates greater than that for which it is
deemed adequate. Because the above analysis suggests that v affects the value for which
the clean flow approximation is aciequate, using a value of v different from 0.1 would
require a repeat of the adequacy analysis. For the numerical solution, a lower bound for p

was set at 1.0 and an upper bound set as per the following analysis.

Pump Rates for an Adequate Clean Flow Approximation

The first step in making the clean flow approximation useful is the determination
of a rate for which it becomes adequate. Ultimately, this solution can always be used as a
lower bound to y for any non-zero pump rate, but it’s illustrative usefulness for x is not
realized unless the pump rate is raised sufficiently high. Figure 6.2 shows a pump rate
which makes the clean flow approximation of x poor, while Figure 6.3 illustrates a pump

rate yielding a better approximation, deemed adequate. Because this solution over-




_____ Clean Flow Approximation (Unimodal)
—————————— Analytic Solution (One Parameter)
Numeric Solution (Unimodal)
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Figure 6.2 Pump Rate (p=1) Yielding a Poor Clean Flow Approximation

_____ Clean Flow Approximation (Unimodal)
---------- Analytic Solution (One Parameter)
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Figure 6.3: Pump Rate (p=10) Yielding an Adequate Clean Flow Approximation
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estimates the transfer from y to x, x will be high early on and low for the rest of the time.
The criterion for this determination of adequacy was that they were visibly similar

through the advection domination stage and until the unimodal case diverges from the

‘one-parameter case.

Comparison of x and y for Unimodal Case vs One-parameter Case

Mobile Region Concentration. The fact that the unimodal case diverges from the

one-parameter case is a major observation. In Figure 6.3, the pump is run long enough to

clean up a major portion of the fast and median sites associated with the unimodal case

and a major portion of the contaminant in the one-parameter case. Figure 6.4 illustrates

the same scenario, but the pumps ran twice as long. Pump rate was 10 unless otherwise
_____ Clean Flow Approximation (Unimodal)

---------- Analytic Solution (One Parameter)
Numeric Solution (Unimodal)

0.01¢

0 2 4 6 8 10 12 14
t

Figure 6.4: Longer Run (p=10) For Clean Flow Approximation
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specified in this entire section. The divergence begins to occur at time, 7=3, as slow sites
associated with the unimodal case continue their slow cleanup. Note that for this given
distribution, nearly three orders of magnitude difference is seen between the two cases by
t=14.

The exact point of this divergence varies greatly, and the parameters affecting this
point are of great importance. This point ultimately determines when consideration of a
range of rate parameters, if actually present, is worth the effort. If divergence does not
occur until safe concentrations are reached with no possibility of rebound, then multi-
parameter rate-limited transport models are not worth the added complexity and
computing time. On the other hand, if this point is reached not long after breakthrough in
a long-term cleanup operation, multi-parameter rate-limited transport models of this sort
would be needed. Also, even if safe concentrations were reached before this point, the
possibility of rebound must be thoroughly investigated before this sort of rigorous

(although first-order) rate-limited transport modeling is deemed unnecessary.

Immobile Region Concentration. Even though x is typically what is predicted by
models and observed in the field and laboratories, the more important variable is y. In
this formulation, it represents contaminant that is still stored in the ground and in need of
removal. Only when contaminant redistribution is examined later, will y(A,f) be

examined directly. The average immobile region concentration is defined as:
()= J, fO)y(h.1)dh . (6.2)

It is this quantity, when multiplied by total immobile zone water content, (8;, )l , that

quantifies total aqueous contaminant still in immobile regions. Based upon the known
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standard deviation of the Gamma distribution, Boi’2, the code in Appendix G discretizes A
based upon a selected number of bins, with the upper bound being three standard
deviations above the greater of the two means of the bimodal distribution. The composite

midpoint numerical quadrature approximation to Equation 6.2 is:
b
¥(1)= X F )y (it )M, ), (6.3)
i=1
where b is the number of bins and AA; is the bin width. The following similar technique
was used to approximate y(A,t):

y(0t)=3(10)e ™ + [ x{sfreMi-as

L (6.4)
Y(Aistn) = y(x,- 0)eMtn+ Zwmhxm A M),
m=l1

where wy, is the composite trapezoid weights (¥2,1,...,1,%2). In this work, twenty-four bins

were used.

Figure 6.5 illustrates the behavior of y(¢) for the same scenario as Figure 6.3.

Note that the divergence of the unimodal case from the one-parameter case occurs earlier

for y(t) than for x. Once y(t) begins to diverge, it takes a while for x to react. Note also

that the further out in time you go, the better the limiting pump-rate solution gets.

Change in Average Effective Rate Parameter with Time

One very important process that is occurring for the unimodal case that has not

been examined yet, is a change in the effective mean rate parameter with time. The

6.9




Clean Flow Approximation (Unimodal), y(r)

---------- Analytic Solution (One Parameter), y(f)
Numeric Solution (Unimodal), y(r)

1F
0.5}

0.1¢
0.05¢

y(t):)’(t) 001t ) N
0.005¢} h

0.001 k-

t

Figure 6.5. Behavior of y(¢) and y(r) for One-Parameter and Unimodal Cases

expression defining this parameter is:

_ O ()
A()= =0 :

The integral in the numerator was approximated for the numerical solution found by the

(6.5)

code in Appendix G using the same basic technique described by Equation 6.4. The

analytical values of the integrals for the clean flow approximation were found using
techniques described in Appendix C. Figure 6.6 illustrates A(t).

If Equation 6.5 could be used to obtain a simple expression for single rate

parameter variation with time for certain general classes of contaminants, this could be
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Clean Flow Approximation (Unimodal)
Numeric Solution (Unimodal)
S ummanas——

Figure 6.6. A(t) vs Time.

very useful to present modelers. Their numerical solution techniques might allow the
simple insertion of this function in place of their single rate-parameter. I anticipate that if
the expression derived for this function was inserted into the one-parameter case
governing equations, a numerical solution of them would closely approximate the derived
limiting rate solution. A thorough test of this hypothesis is warranted before using this
expression (or a suitably derived approximation to it) in more complex governing
equations. Of course, the form of the theoretical distribution (continuous or discrete)
determines the complexity of the resulting function. With this apparent change in

effective mean rate parameter in view, we will now examine the soak phase in detail.
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Tailing and Rebound of Unimodal Case vs One-Parameter Case: The Soak Phase

Short Pump, Short Soak. Here, short is determined in relation to the size of the

inverse mean rate parameter of the unchanging distribution, 1/l (not the effective mean
rate parameter previously described). Figure 6.7 illustrates a relatively short pump cycle
with an equal soaking period. Due to the presence of some faster sites in the unimodal

case than the one parameter case’s sites, the unimodal case cleans up faster in this time

---------- Analytic Solution (One Parameter)
Numeric Solution (Unimodal)

0.5¢

0.2}
0.1f

0.05¢1

x(1)
0.02¢

0.01}

Figure 6.7. Behavior of x for Short Pump, Short Soak.

frame and appears to rebound quite similarly. But because the differences are quite small,

we will move on to a mid-range pumping period.
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Short Pump, Mid-Range Soak. Mid-range here is defined as approximately ten

inverse mean rates, 10/u. Figure 6.8 illustrates a parallel sequence of plots of x, y(t), and
X(t) for a one time-unit pump period followed by a thirteen time unit soak period.

Remember that the analytic solution for X(t)is only valid for the initial pump period

(with sufficiently high pump rates). Here we see x for the unimodal case starting below x
for the one-parameter case, yet rebounding above it and continuing to rebound beyond the

time frame shown. From Figures 6.8b and 6.8c, we can see that y(t) will clearly drive x

to a higher final (asymptotic) value for the unimodal case and will take much longer to
approximately equilibrate. The one-parameter case has visibly equilibrated by six time
units, and the unimodal case is visibly very close to it by fourteen time units.

Even though x for these two cases is still visibly quite similar, Figure 6.8c gives a
very important insight. Note that for over three time units after pump shutoff, the
effective mean rate parameter continues to decrease. This is because all of the y’s above
x continue to decrease, and for this short time, dominate contaminant redistribution of
contaminant back into faster sites that begins at pump shutoff. Even after fourteen time
units, the effective rate has not reattained unity (all y’s have not sufficiently approached x
yet). This is a simple, but important point that x and y asymptotically approach each other
during the soak phase. Finally, note that even though the fastest pump rate, if used
continuously, provides the fastest cleanup, the necessity of treating renders soaking

beneficial (if the time can be afforded). Slow sites continue to be reduced in
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—————————— Analytic Solution (One Parameter)
Numeric Solution (Unimodal)
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0.02¢

0.01¢
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0.005}
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t

Figure 6.8a. Behavior of x for Short Pump, Mid-Range Soak.

---------- Analytic Solution (One Parameter), y(7)
Numeric Solution (Unimodal), ¥(t)

1.
0.7}
0.5}

0.3}

0.2¢
0.15¢

0.1}

5(2).y()

Figure 6.8b. Behavior of y(f) and y(¢) for Short Pump, Mid-Range Soak.
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Clean Flow Approximation (Unimodal)
Numeric Solution (Unimodal)

0 2 4 6 8 10 12 14
Figure 6.8c. Behavior of X(t) for Short Pump, Mid-Range Soak.
concentration by contaminant movement to both the mobile region and faster sites. We

will see more of this later.

Mid-Range Pump and Soak. Figure 6.9 illustrates this sequence of a fourteen

time unit pump and an equal soak time. The longer and harder one pumps, the larger
these two cases diverge: over two orders of magnitude in this sequence. Note that the
effective mean rate gets quite small. In fact, this mean rate is so small that a finer
discretization of A in the code would probably be necessary if greater accuracy was
desired. Nevertheless, a continued decrease in this mean rate is observed, and its log-

curvature appears to be decreasing. Theory demands that as time approaches infinity, this




—————————— Analytic Solution (One Parameter)
Numeric Solution (Unimodal)

0.0001

x(?)

0 5 10 15 20 25

Figure 6.9a. Behavior of x for Mid-Range Pump and Soak.

---------- Analytic Solution (One Parameter), y(f)
Numeric Solution (Unimodal), ¥(z)

0.001

y(z),y(t
y()y()D.Dﬂﬂﬂl

t

Figure 6.9b. Behavior of y(r) and y(¢) for Mid-Range Pump and Soak.
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Clean Flow Approximation (Unimodal)
Numeric Solution (Unimodal)
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Figure 6.9c. Behavior of A(¢) for Mid-Range Pump and Soak.

mean rate becomes infinitely small, because contaminant would then only be present at
these sites with an infinitely small rate parameter.

Note also that equilibration time remains about three time units for the one-rate
case while equilibration continues well beyond fourteen soaking time units for the
unimodal case. The rebound of the effective mean rate is slower in this sequence because
slower sites have now been somewhat emptied, requiring longer time periods for

equilibration, and hence longer periods for rebound of this rate.

Mid-Range Pump and Long Soak. Figure 6.10 illustrates this sequence in which

the soak period clearly allows x and y(t) for the unimodal case to nearly equilibrate. The
apparent slope discontinuities are merely due to a numerical output that was too coarse

(although step size remained at 0.01). Figure 6.10c indeed shows that our X(t) has nearly
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---------- Analytic Solution (One Parameter)
Numeric Solution (Unimodal)

..........................

0.
x(1)
1.
1. '
40 60 80 100
t
Figure 6.10a. Behavior of x for Mid-Range Pump, Long Soak.
—————————— Analytic Solution (One Parameter), y(f)
Numeric Solution (Unimodal), %(z)
| 0.1
0.001
y(1).y(®
0.00001
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Figure 6.10b. Behavior of y(f) and 3(t) for Mid-Range Pump, Long Soak.
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Clean Flow Approximation (Unimodal)
Numeric Solution (Unimodal)
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Figure 6.10c. Behavior of A(t) for Mid-range Pump, Long Soak.

reattained unity (the clearest sign of equilibration). Although longer-term sequences were
investigated, no further insights were gained.

A Lower Pump Rate (p=1) for Mid-range Pump and Soak. The sequence shown

in Figure 6.11 was produced in a fashion similar to Figure 6.9 to illustrate the effects of a
lower pump rate. Note that the divergence between the two cases is slightly reduced
(from over two orders of magnitude in x to less than two). Rebound and equilibration
time both are greatly reduced for both cases because a slower pump rate allows slower
sites to equilibrate with pumps running, such that there is less equilibration necessary

upon turning the pumps off. Note that the limiting rate solution’s effective mean rate is
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—————————— Analytic Solution (One Parameter)
Numeric Solution (Unimodal)

x(f) 0.001

0.0001

Figure 6.11a. Behavior of x for p=1, Mid-range Pump and Soak.

---------- Analytic Solution (One Parameter), y(?)
Numeric Solution (Unimodal), y(¢)

y().y® 0.001 \

0.0001 N

—_——— — —— e — —-

t

Figure 6.11b. Behavior of y(f) and ¥(¢) for p=1, Mid-range Pump and Soak.
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_____ Clean Flow Approximation (Unimodal)
---------- Rough Fit (Equation 6.6)
Numeric Solution (Unimodal)

0 5 10 15 20 25

Figure 6.11c. Behavior of A(t) for p=1, Mid-range Pump and Soak.

much lower than the numerical, further demonstrating that this pump rate makes the clean
flow approximation inadequate.

An Approximation to the Effective Mean Rate Parameter. As a final note in this

soak phase investigation, Figure 6.11c has the following decreasing exponential plotted in
the pumping region:

Mt)=ae™, (6.6)
where a and b are constants to be found based upon a hypothesized distribution present in

any given situation. Approximating the rising rate parameter during soaking would

require more investigation. This is suggested as a possible rough approximation to the
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* shape of this effective mean rate’s change with time. Other distributions would probably

require different forms.

Invalid Predictions Using Short-Term Data: the Bimodal vs Unimodal Case

In this section we will investigate the effects of errors in assumed distributions
present in the soil. We continue to include the one-parameter case also. If, for example,
the distribution shown as a solid line in Figure 6.12 is the actual distribution present, what
are the effects of presuming the presence of the other three distributions shown in the
figure (each has a mean of unity)? Figure 6.13 illustrates that each distribution yields a
very similar solution up to four time units. At this point the unimodal and bimodal cases
diverge from the one rate case. Note that the sharper peaked distribution (the lesser
amount of slow sites) diverges the least from the one-parameter case. The unimodal
standard and our actual distribution continue to be similar all the way until eight time
units (twice as long as it took to diverge from the one rate case).

Let us assume that the soil’s rate-limited transport characteristics are to be
determined in a laboratory experiment that is to last only seven time units (a decrease in
concentration at the well head by a factor of 10™). Clearly, the presence of the sharp peak
of slow sites would go unnoticed in the lab and cause unexpected tailing and rebound in
the field. The lab work might still reveal the presence of a distribution, but unless the
work was done over a long enough period of time, long term rate-limited transport
behavior would still be unpredictable without knowledge of these slow sites. I will

suggest an approach that could reduce the necessary lab time later.
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___ Unimodal Gamma (0=3, u=1, y=0)
_____ Unimodal Gamma (a=5, pu=1, y=0)
—————————— Dirac Delta (One Parameter, u=1)

Bimodal Gamma (0=3, [1;=1, 1»=0.1, ¥=0, d;=0.1)
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Figure 6.12. Distributions for Short-term vs Long-term Comparison.

Key Same as Figure 6.12.
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0.00001

Figure 6.13. Behavior of x for Short-term vs Long-term Comparison.
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Remember that the Gamma distribution was chosen for its flexibility as well as its
integrability. It allows for an assumed non-zero, minimum value for the rate. Figure 6.14
illustrates minimum values of 0.25, 0.5, and 0.75 while keeping a unity mean. Figure
6.15 shows solutions for each of these distributions with some interesting insights.
Previously we noted that the one parameter case yielded a log-linear slope in x after rate-
limited transport domination. We also noted that certain non-zero minimum rate
parameter values (non-zero y‘s) could allow x to reach a log-linear slope in a given time
period. Figure 6.15 demonstrates this. Nevertheless, note that the logarithmic slope is
still less and concentrations are still higher when this log-linearity begins. If there is a
maximum aggregate size or a maximum tortuous pore length into which contaminant can
diffuse, this would set a theoretical minimum mass transfer rate. I therefore suggest using
an estimated or experimentally derived minimum rate in this case. I do not understand
the chemical conceptualization well enough to discuss the merit of a minimum rate for

that model.

Redistribution of Contaminant During Soak Phase

In the soak phase section, redistribution was mentioned often but never really
illustrated. Figure 6.16 actually shows this redistribution. The horizontal lines are the
presurhed single immobile concentration driven by a single rate (a line instead of a point
at A=1 for illustrative purposes), while the curves represent y for each discretized rate and
for a few selected times. A discretized rate here is referring to the number of discrete

values of A used to produce these plots (24). A fourteen time unit pump and a fourteen
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_ __ Unimodal Gamma (0=3, u=1, y=0.25)
_____ Unimodal Gamma (0=3, pu=1, y=0.5)
---------- Unimodal Gamma (0=3, u=1, y=0.75)
Unimodal Gamma (0=3, u=1, y=1)
Dirac Delta (One Parameter, pu=1)

..............

Figure 6.14. One Parameter and Gamma Distributions with y=0, 0.25, 0.5, 0.75.
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Same Key as Figure 6.14.
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Figure 6.15. Behavior of x for One Parameter and y=0, 0.25, 0.5, 0.75.
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Figure 6.16. Contaminant Redistribution.

time unit soak was used for this figure, and snapshots of y are shown at 1=7,14,21 and 28.
Remember that y is unity initially for all rates.

The sharp elbow in each curve represents the break point between rates for which
the LEA would be valid and those for which it would not be valid. The sites for which
the LEA would not be valid are the ones that cause the non-loglinear (decreasing
logarithmic) slope in x. Although this curvature will be present out to infinity (for
distributions with ¥=0), it will become negligible eventually due to the small water
content fractions of such small rates (according to the distribution). The curvature will be
absent eventually for non-zero values of vy, as was previously shown. For =7, rates above
approximately 1.7 appear to have their respective y values equal to x, while rates above

1.0 (the distribution mean) appear to have this condition for z=14. This demonstrates for




this distribution that well before fast sites (above the mean) reach a level validating the
LEA, unimodal solutions have already greatly diverged from the one rate case.

Note primarily the clear movement of slow site contaminant to fast sites during
the soaking phase from =14 to 21 to 28. Total contaminant present in any given range of
sites is determined by Equation 6.2, with bounds of integration appropriate to the site
range of interest. The observed rates of redistribution start out quite fast, but quickly

slow as contaminant is drawn from slower and slower sites.

Pulsed Pumping Concepts

Now we seek a clearer picture of soak benefits. For this example, we will
consider only our standard unimodal case and our one rate case. Figure 6.17 illustrates
two sequences: a seven time unit pump and soak double cycle versus a fourteen time unit
pump and soak single cycle. Note that total pumping and soaking time is identical.

First of all, a reduced final concentration is attained by two cycles instead of one
for either contaminant distribution case. The concentration difference is most
pronounced for the one-parameter case because equilibration time is so much shorter. In
order for similar differences to appear for the unimodal case, soaking times must be long
enough to allow more total equilibration. In any event, a benefit is still illustrated for the
unimodal case. Although y shows very little difference, x shows a significant difference
and the effective mean rate plot shows a marked difference. The higher effective ending
rate for the one cycle case indicates that less slow contaminant was cleaned up than for

the two cycle case.
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Figure 6.17a. Behavior of x for Pulsed Pumping.
1E+00
1E-01 -
1E-02 . Unimod.al
(Numerical), Two
1E-03 Cycles
One-parameter
1E-04 1 (Analytic), Two
Syg:les
p NN e nimodal
y( )’1 E-05 (Numerical), One
— Cycle
y (t ) 1E-06 - = = = =One-parameter
1E-07 ] (Analytic), One
Cycle
1E-08 i
0 5 : 10 15 20 25 30
t

Figure 6.17b. Behavior of y(f) and y(¢) for Pulsed Pumping
(Note: y(#) for One-Parameter and ¥(r) for Unimodal).

6.28




1.00 -
0.90 1
0.80 1
0.70 1
0.60 -

X(t) 0.50 - Two Cycles

------- One Cycle

0.40 1
0.30 +

0.20 +
0.10 1
0.00 t } t t t |

Figure 6.17c. Behavior of A(t) for Pulsed Pumping.

Finally, although it is not easily seen in Figure 6.17b, the two cycle case has
slightly higher average concentrations over the entire pumping regions than the one cycle

case. This would benefit any necessary treating operations.
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VII. Conclusions and Recommendations

A Continuous Distribution of Rate Parameters Models Tailing, Rebound and the Time

and Pump Rate Dependence of a Single Effective Rate Parameter Well

Rate limited transport due to a range of mass transfer rates, if present instead of a
single rate, is a very plausible explanation for many unpredictable behaviors. The
existence of a distribution of mass transfer rates would explain tailing and rebound above
most rate-limited transport model predictions. More importantly, the time and pump-rate
dependence of the single “representative” rate used by most present modelers is implicit
in this model.

The solutions to the developed model clearly demonstrate tailing and rebound
above the one-parameter case, and a time and pump rate dependent effective single rate
parameter. If rate-limited transport is indeed the cause of many instances of
unpredictable behavior, a more accurate way of modeling it might be needed. When
more than one rate-limiting process is present, this work’s method is offered as a more
realistic (based on theory) and probably more accurate means of modeling rate-limited

transport than most common methods.

Explicit Knowledge of Slow Sites Present and Deposition History are Essential to

Accurate, Predictive Modeling

Assuming the coexistence of multiple mass-transfer rates, accurate, long-term

field and laboratory predictions require detailed knowledge of existing slow mass transfer
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rates and deposition history. It was clearly seen that y coupled with the distribution
determined x, and if the starting values of y are not well known (from deposition history),
then the model is without initial conditions. Furthe:r, (even with accurate initial
conditions), accurate long-term predictions are impossible without knowledge of the mass
transfer rates in the slow site regime (i.e. with only short term data).

Itis also clearly seen in the literature that three dimensional models are inherently
challenging. Before the challenge can adequately be met, at the very least, reasonably
good initial conditions and good long-term soil sorption/transport characteristics must be
known. Soil sorption/transport characteristics often realistically involve multiple mass
transfer rates. It is clear that if the range of rates is wide enough, they are best modeled
by either a discrete or continuous distribution of rate parameters instead of just one
“representative” rate parameter. This work gave some insight into how wide is wide
enough. It appears that unless the minimum mass transfer rate present is very near the
representative rate, significant predictive err<;rs are likely in the long-term (see Figures

6.14 and 6.15).

Gaining This Knowledge Probably Requires Long-Term Laboratory Experiments

As we examined the bimodal and varied unimodal cases for a hypothetical
scenario, it was clear that predictions based upon short term experiments are only worth
making for short term field situations. Slow sites that are yet unobserved in the lab could
easily be present in the field. Also, because deposition history in the field is at best only

vaguely known, very good sampling techniques and tricky laboratory work indeed are
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necessary to obtain both soil sorption/transport characteristics and initial conditions
simultaneously.

One suggested means of minimizing lab time necessary to discover long-term soil
sorpﬁon/transport characteristics is the discovery of a predictable general shape of the
distribution for classes of contaminants and soils. If the shape was known, the faster sites
discovered by short-term experiments could be used to estimate the slower sites using the
general shape mentioned above. Also, models which inherently have the ability to
estimate parameters from first principles (such as diffusion-based models), rather than
repeated curvefitting, are probably closest to the goal of accurate predictions. These types
of models have the immense benefit of foregoing long-term laboratory work for long-

term cleanups (assuming initial contaminant presence is known).

Pulsed Pumping Generally Appears to Benefit

This work did minimal investigation of pulsed pumping. It was generally found
to benefit when the treatment process was a limiting cost consideration. This conclusion
is only true from the perspective of rate-limited transport, since other transport processes
were generally ignored. Soak time must clearly be available for pulsed pumping to even
be considered. In other words, cleanup will always go more slowly using pulsed
pumping, and unless this longer cleanup time is acceptable, the efficiency benefits are out
of reach. This technique generally caused higher average concentrations while the pumps
were running, yielding a more efficient treatment process. The efficiency of a given

treatment process i1s maximized normally with maximum contaminant concentrations
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being extracted from the wells. Also, the pumping efficiency is increased as well because

contaminant extracted per pumping unit time is increased.

Suggestions for Further Research

First of all, a wider variation in input parameters p and v is very much in order.
Exploring every conceivable possibility in the field would likely give more insight into
exactly when such a model is necessary. Comparing laboratory and field data to this
model could give insights both into the accuracy of its sorption/transport modeling ability
as well as what process causes what effect in BTC’s.

Another beneficial addition to this work would be to allow contaminanted water
to flow into the region of interest, the typical laboratory procedure for generating BTC’s.
This would make the above suggestion feasible. Deposition modeling is equally
important.

Actually, this model without modification could be used to analyze stagnant
deposition. A few computer runs with this initial condition were done, but again, a much
more thorough investigation is called for. As with cleanup, a thorough investigation of a
wide range of possible input parameter values and initial conditions would allow the
application of many conclusions made in this work to any given field situation. It would

also lead to more insight into when such a model is indeed necessary.




Appendix A: A Change of Variables Facilitating Mathematica Integrations of Gamma

Distribution Function Moments.

Recall that Equation 3.7 gives a standard form of the three-parameter Gamma

Distribution:

= I

—0 <Y <eo, A>Y, a>0, >0,
I(e)=J7o* e 0do.
For this work, y must always be greater than zero (rate constants are always positive),
which is why z is greater than zero also. The distribution in this form could not be

integrated by Mathematica, but with the following coordinate transformation, it became

integrable:

()
0= 5@ )[B) exp[ 2 (A1)
0<z<oo, >0, B>0, dz=dA

The following Mathematica sequence shows how analytic forms for |, 6, j, and w were

obtained (note that o=a, f=b, and y=g):
f1[a_,b_,z_}:=(1/(b*Gammal[a]))*(z/b)*(a-1)*Exp[-z/b]
Integrate[f1[a,b,z],{z,0,Infinity }] (*Normalized Probability Distribution Proven*)

1
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Integrate[f1[a,b,z]*(z+g),{z,0,Infinity }] (*A=z+g, Proven Distribution Mean*)

ab+g

Sqrt[Integrate[f1[a,b,z]*(z-a*b)*2,{z,0,Infinity }]] (*Proven Standard Deviation*)

(@*b"2)N( 1/25

Integrate[f1[a,b,z]*(z+g)"2*Exp[-t(z+g)],{z,0,Infinity } ] (*

((bM-1)Ma*(a*b 2 + at2*b 2 + 2*a*b*g + gh2 + 2%*a*b 2¥g*t + 2¥b* g 2%t +
bA2*g A 2RA2N/(ENg*t)*(bA(-1) + t)ra*(1 + b*t)A2)

Integrate[f1[a,b,z]*(z+g)*Exp[-t(z+g)],{z,0,Infinity }]

(DA -D))Ma¥(a*b + g + b*g*O)/(ENH)* (A1) + Dha*(1 + b*1))

A2




Appendix B: Mathematica Analytic Solution of One-Parameter Case

In this appendix, the Mathematica sequence used to obtain the analytic solution of
the one rate case is described. Also included is the module built to allow pump cycling
with this solution. Although the output was a bit messy and the simplification process

was a little tedious, Mathematica definitely made the overall task easy:

eqns={x'[t]+p*x[t]l==v*k*(y[t]-x[t]), y'[t]==k*(x[t])-y[t]),y[0]==y0,x[0]==x0};

Simplify[DSolve[eqns,{x,y},t]]

Without the simplify command, five pages of solution was output. With it, the solution
was a page long, with the rest of the simplifying done by hand. All hand simplifying was
tested against plots of a function built from the actual output of this sequence. Also, the
solutions calculated by the code in Appendix G were tested against these forms also. The

following is the form of the functions used for this solution:




xafu_,p_,v_,x0_y0_t_]:=
(1/(2*(Sqrt[(u-p)*2+u*v¥(2*u+2*p+u*v)])))*
(xO*(-u+p+u*v+(Sqrt[(u-p) 2+u*v*(2*¥u+2*p+u*v)])) -
2%y0*u*v)*Exp[-(u+p+u*v+(Sqrt[(u-p) 2+u* v (2*u+2 *p+u*v)])) *t/2] +
(1/2*(Sqrtf(u-p) 2+u*v*(2*u+2*p+u*v)])))*
(x0*(u-p-u*v+(Sqrt[(u-p) 2+u*v*(2*u+2*p+u*v)])) +
2%y0*u*v)*Exp[-(u+p+u*v-(Sqrt[(u-p) 2+u*v*(2*u+2 *p+u*v)])) *t/2];
yalu_,p_,v_,x0_,y0_,t_J:=
(1/2*(Sqrt[(u-p) 24+u*v*(2*u+2*p+u*v)])))*
(-2%x0*u + yO*(u-p-u*v+(Sqrt[(u-p) 2+u*v* (2*u+2*p+u*v)])))*
Exp[-(u+p+u*v+(Sqrt[(u-p) 24+u*v* (2*¥u+2*p+u*v)])) *t/2] +
(L/2*(Sqrt[(u-p) 2+u*v*(2*u+2*p+u*v)])))*
(2*x0%u + yO* (-u+p+u*v+(Sqrt[(u-p) 2+u*v*(2*u+2*p+u*v)])))*

Exp[-(u+p+u*v-(Sqrt[(u-p) 2+u*v¥(2*u+2*p+u*v)]))*t/2];

It was also necessary, at times, to use this function for a pump and soak sequence.
This was made possible by the following function, which essentially reinitializes the
solution at soaking time:
xeyclu_,p_,tp_,v_,x0_,y0_,t_]:=Which[t<=tp,xa[u,p,v,x0,y0,t],
t>tp,xa[u,0,v,xa[u,p,v,x0,y0,tp],yalu,p,v,x0,y0,tpl.t-tp]]
yeyclu_,p_.tp_,v_,x0_,y0_,t ]:=Which[t<=tp,ya[u,p,v,x0,y0,t],

t>tp,ya[u,O,V,xa[u,p,v,x0,y0,tp] ,Ya[u’PaV,XO,YO,tP] ,t'tp]]
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Appendix C: Module for Exponential Integral Form and Clean Flow Approximation

In the Solution section, Equations 4.15 and 4.16 defined the task at hand:

ax -1 ax a ax

€ _ e e
I T L (4.15)
-5
El(2)=[7,~—ds. (4.16)

The following module, ixm was built to do Equation 4.15’s integration by parts, utilizing

Mathematica’s built-in function to evaluate Equation 4.16 for the last integration by parts:

ixm[g_,h_,av_,mv_]:=Module[{cum,i},
(*this finds: Integrate[Exp[a*x]/x m,{x,g,h}]*)
(*g & h must be positive, and mv must be an integer>0%*)
cum=ExplntegralEi[av*h]-ExpIntegralEi[av*g];
Which[mv>2,Do[cum=(-1/(i-1))*(Exp[av*h]/h"(i-1) -
Explav*g]/gN(i-1))+av*cum/(i-1),{i,2,mv}],
mv==2,cum=-Exp[av*h]/h + Exp[av*g]/g + av¥*cum];

N[cum]]

The following modules were used to actually plot x(t), y(z), and A(r):
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xlimft_,p_,v_,d1_,al_,bl_,gl_,a2 b2 ,g2 x0_,y0_]:=Module[{w1i,w2i,d2=1-d1},
wli=y0*Exp[(gl-p)/b1]*(al*ixm[1,1+b1*t,(p-gl)/bl,al+1] +
(gl/b1)*ixm[1,1+b1*t,(p-gl)/bl,al]);
w2i=y0*Exp[(g2-p)/b2]*(a2*ixm[1,14+b2*t,(p-g2)/b2,a2+1] +
(g2/b2)*ixm[1,14+b2*t,(p-g2)/b2,a2]);
N[Exp[-p*t]*(x0 + v*d1*wli + v*d2*w2i)]];
yave[t_,d1_,al_,bl_,gl ,a2_,b2 ,g2 ,yO_]:=
dI*((bIN(-1)Mal*y0)/(ENgl*t)*(b1A(-1) + t)al)+
(1-d1)*((b27(-1))Na2*y0)/(EN(g2*t)*(b2/(-1) + t)Ma2);
muaveft_,a_,b_,g_,yO_]:=((b(-1))"a*(a*b + g + b*g*t)*y0)/
(ENg*0*(b(-1) + Hra*(1 + b*1));
lambar[t_,d1_,al_,bl_,gl_,a2 b2 _,g2 y0_]:=
(d1*muave[t,al,bl,g1,y0] + (1-d1)*muave[t,a2,b2,g2,y01)/

yave[t,dl,al,bl,gl,a2,b2,g2,y0]

These proved quite useful in the quick examination of a multitude of solution behaviors.
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Appendix D: Second Order Convergence and Uncertainty Monitoring for Composite

Trapezoidal Method

This appendix will demonstrate the second order convergence of this
implementation of the composite trapezoidal method and summarize the uncertainty

monitoring principles for this work. Figure D.1 is a pump and soak solution (short term)

for which uncertainty and convergence is to be analyzed.

1E+00 +

1E01 +
= Unimodal (Numerical)
N
T N One Rate (Nurmerical)

1E02 +

1E03 } 1 } {

0.0 1.0 2.0 3.0 4.0

Figure D.1. Short Term Pump and Soak Solution (A=0.001).

Figure D.2 clearly demonstrates the second order convergence of the method since errors

shrunk by a factor of 100 when 4 was shrunk by a factor of 10.
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1E-09 +

1E10 } } t t + t } |
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

Figure D.2. Change in Error for Change in 4 from 0.01 to 0.001.

Note that uncertainty denotes a simple difference between the £=0.01 and 0.001 solutions
(the second common uncertainty monitoring method mentioned in the Numerical
Methods section). Notice also from Figure D.2 that error and estimated uncertainty
follow each other. For a more important uncertainty reference, % differences are plotted

in Figure D.3.
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Figure D.3. Percent Uncertainty and Error for £=0.01.
From a percentage reference, there is actually divergence observed, but notice how small

relative error actually is to begin with for #=0.01: nearly one thousandth of a percent.

Notice also that it does not ever grow after the short initial hump.
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Appendix E: Third-order Error of Quadratic Interpolation

This appendix will summarize the proof that quadratic interpolation involves third
order error before it is employed in any composite fashion. Quadratic interpolation is

accomplished by the following:

3 3 1
firz =§fo +Zfl_§f2' (E.1)

To start, the function to be interpolated must be expanded in a Taylor’s series about the

halfway point for each point to be used in the approximation:

—_h) (:’1)2 (—_h)3

_ 2 7 2 ” 2 ”

fo=hfin+t T Sip + Y i+ Y fint s
ﬁ) (ﬁ)z (f‘.f
2 7 2 ” 2 7”7

S =i +—1, Jirp + X Jir + 3 fint (E.2)
2 ’ 2 ” 2 n

fa=fin +—1!—“f1/2 "'7‘]‘1/2+ Y fin+..

Now, if these are substituted into our quadratic interpolation formula, E.1 and coeficients

of the various orders of derivatives are found, this yields:

7 h3 m
S = fin +T6‘f1/2+--- ’ (E.3)

Notice that the third order term is the first non-zero contribution to errors in Taylor series

truncation, thus making the technique third order in a single application.




Appendix F: Second-order Convergence of Linz’s Stated Fourth-order Block-By-Block

Method

In the previous appendix, we saw that Linz’s example block-by-block technique
was clearly only at most third order when applied to an example function that is not
constant. This author believes based upon theory and the following example program,
that because quadratic interpolation is applied to two integrals per step, and for this work
it would be applied in a composite format (for Z), the method reduces to second order (as
long as composite integration errors do not overwhelm interpolation errors).

This concept is easily proven for composite integration, as demonstrated by
several authors. (Young and Gregory, 1988:373, Hildebrand, 1987:95) Its basis there
hints strongly to its reality for quadratic interpolation, since Newton-Cotes type
integration approximation schemes are interpolatory by nature. But to further substantiate
the hypothesis, without delving into a messy proof, we will simply code this method.

The following code was used to generate the following tables’ values.

PROGRAM BTest

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DOUBLE PRECISION £ [ALLOCATABLE] (:)

INTEGER*4 m,kp,j,n,nl,n2

CHARACTER*7 fname
10 FORMAT (E11.4E2,',',E22.16E2,',',E22.16E2,',"',E22.16E2)
20 t=0D0

£0=1D0

WRITE(*,*) 'Input h,m, kp'
READ(*,*) h,m,kp

Q

Allocate necessary array sizes

ALLOCATE (£(0:m))
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c Reads in output filename

WRITE(*,*) 'Output to file? (l=yes,anything else=no)'

READ(*,*) Jf

IF (jf£.EQ.1) THEN
WRITE(*, *) ‘Enter 7-char output file([appos]filenam[appos]):'
READ(*, *} fname

Q

File for data to be written to

OPEN (1,FILE=fname//'.out',6 STATUS='UNKNOWN',
+ ACCESS="'SEQUENTIAL' ,FORM="'FORMATTED')
WRITE (1,*) '£0,h='
WRITE (1,*) fO,h
WRITE (1,*)
WRITE(1l,*)'t ', fname,'.num ', fname,'.ana '
WRITE (1,10) t,f0,f0,t
END IF
WRITE (*,*)
WRITE (*,10) t,f0,f£f0,t

Q

Initializing variables

£(0)=£0

Q

Start loop

100 DO 1000 n=0,m-2,2
nl=n+1
n2=n+2

Q

Step times

t=n*h
th=(n + 0.5D0) *h
tl=nl*h

" t2=n2*h

Summations

Q

s1=0D0
IF (n.NE.Q) THEN
DO 200 j=0,n
IF ((j.EQ.0).OR.(j.EQ.n)) THEN
wt=1D0
ELSE IF (MOD(j,2).EQ.0) THEN
wt=2D0
ELSE
wt=4D0
END IF
sl=sl + wt*f(j)
200 CONTINUE
END IF
f(nl)=((f(n) + (h/6D0)*(~-15D0*f(n)-20D0*s1*(h/3D0)-32D0*
((h/3D0)*s1l + h*f(n)*5D0/12D0)+4D0* (h/3D0)* (sl + f(n)))) +
({h/6D0)*(3D0 - 32D0*(-h/12D0) + 4D0*h/3D0))*
(£(n)+ (h/3D0)*(-6D0*f (n)-8D0*s1* (h/3D0)-32D0*
((h/3D0)*sl + h*f(n)*5D0/12D0)-8D0* (h/3D0) * (sl + £(n))))/
(1D0-(h/3D0) *{-32D0* (-h/12D0) - 6D0 - 8D0O*h/3D0)))/
(1D0 - (h/6D0)*(-24D0 - 24D0*2D0*h/3D0 + 4D0*4D0*h/3D0) -
((h/6D0)*(3D0 - 32D0*(-h/12D0) + 4D0*h/3D0))*
({(h/3D0)*( -24D0 - 32D0*2D0*h/3D0 - 8D0*4D0*h/3D0 ))/
(1D0-(h/3D0) *(-32D0* (-h/12D0) - 6D0 - 8D0*h/3D0)))
f£(n2)=((£(n)+ (h/3D0)*(-6D0*f (n)-8D0*s1*(h/3D0)-32D0*

+ 4+ + ++ o+
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Q

Q

1000

Q

Table F.1. Error for Block-by-block Technique, Non-constant Example (function

+ ((h/3D0) *s1 + h*f(n)*5D0/12D0)-8D0* (h/3D0) *(sl + £(n)))) +
+ ((h/3D0)*( -24D0 - 32D0*2D0*h/3D0 - 8D0*4D0*h/3DO0 ))*f(nl))/
+ (1D0~ (h/3D0) * (-32D0* (-h/12D0) - 6D0 - 8D0*h/3D0))

Calculate fan

fan2=2D0*DEXP (-4D0*t2) - DEXP(-2D0*t2)
diff2=fan2-f(n2)

Output to screen and file values for f each kp_th step

IF (kp.EQ.1l) THEN
fan1=2D0*DEXP (-4D0*t1) - DEXP (-2DO0*t1)
diffl=fanl-f(nl)
WRITE (*,10) tl,f(nl),fanl,diffl
WRITE (*,10) t2,f(n2),fan2,diff2
IF (jf.EQ.1) THEN
WRITE (1,10) tl1,f(nl),fanl,diffl
WRITE (1,10) t2,f(n2),fan2,diff2
END IF
ELSE IF (MOD(n2,kp).EQ.0) THEN
WRITE (*,10) t2,f(n2),fan2,diff2
IF (jf.EQ.1) THEN
WRITE (1,10) t2,f(n2),fan2,diff2
END IF
END IF
CONTINUE
IF (MOD(n2,kp).NE.Q) THEN
WRITE (*,10) t2,f(n2),fan2,diff2
IF (FJ£.EQ.1) THEN
WRITE (1,10) t2,f(n2),fan2,diff2
END IF
END IF

DEALLOCATE (f)

Allow another run

WRITE (*,*) 'Another run? (l=yes,anything else=no)'
READ (*,*) mo

IF (mo.EQ.1) GOTO 20
END

location: Linz, 1985:187)

h= 0.1 0.01 0.001
t=0.1 2.03E-3 2.05E-5 2.05E-7
t=0.2 1.98E-3 2.25E-5 2.25E-7

This technique is clearly proven to be only second order for this example.
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Appendix G: Composite Trapezoidal Code for Integro-differential Equation, With
Bimodal Case Allowed, Three Different Pump Changing Schemes, Flexible Output of X
and Y, and Calculation of Mean Y and Effective Mean A

This program solves for the mobile water concentration, X, in a

fixed wvolume, V, of constant saturation soil. A single volumetric flow
parameter, Q, is used to extract solvent that has solute(s)

dissolved in it. Clean solvent is assumed to be flowing through the
outer boundaries of V as the pump runs. The soil is modeled

as a continuum of immobile regions through which no solvent is flowing.
No solute(s) are assumed sorbed within these regions, and solutes have
only a diffusive path to follow in order to reach the mobile zone.
Whether due to different sorption site characteristics or different
geometries of immobile regions, solute moves from immobile to mobile
regions based upon a distribution of rate parameters, lam (lambda),
having a probability density function, f(lam). Two cases are allowed
for (initially): 2 average lam's, ul and u2 (with dl% in ul and

d2% in u2, and a corresponding average immobile concentration, Y),

and a bimodal Gamma distribution of lam's (with d1% in f1(lam) and d2% in
f2(lam), and a corresponding continuum of immobile regions with
concentrations, Y(lam,t). A first order rate model is used for the
non-equilibrium transfer of solute to the mobile region, and X and Y
both are modeled as volume-averaged concentrations. A ratio of immobile
to mobile solvent content in the soil, v, is also used.

The governing two differential equations (with these assumptions) are:
1. Ydot=lam*[X(t)-Y(lam, t)]
2. Xdot+p*X=v*Integral from O0->infinity[f(lam)*lam*[Y(lam,t)-X(t)]]ldlam
p=Q/(V*kr}, where kr is a reference rate constant used to
non-dimensionalize everything
Dot implies the partial derivative with respect to time

The first equation is solved by an integrating factor to obtain:

Y{lam, t)=Y(lam, 0) *Exp[-k*t]+
Integral from O->t[lam*X(t")*Exp[-lam*(t-t")]ldt"

This is plugged into equation #2 and manipulated algebraically to
obtain the form which is solved numerically.

Xdot is dealt with by integration then trapezoid rule, and
the integral from 0->t is dealt with using composite trapezoid rule.

The Gamma distributions used have parameters alpha, beta, and gamma
(a,b,g). Their form is:

f(lam)=(1/(b*GAMMA[a]))* (((lam-g) /b) " (a-1)) *Exp[- (lam-g) /b]

Integrals involving this were analytically found and entered into the
code in appropriate places. u=mean of each distribution=a*b + g, and
the standard deviation of each distribution is b*Sqgrt(a)

a0 000000000an0

PROGRAM TRAPS8
Variable Definitions

General:
to=previous time

naoaaa
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t=present time

m=total # of time steps to be taken

h=time step size

no=previous time step

n=present time step

g=p+v*u (p,u defined above,po->go from previous time step)

lam(j) ,y(j)=3 bins of discretized lambda's/y's,j=1...# of bins

yO=starting concentration in each immobile region

yO0a=present y0 for analytic solution

x=concentration in mobile region

x(1l,i)=trapezoid @ ith step

x(2,1i)=trapezoid @ ith step using average model

w=function of t (different when average lam is used, called wa)

wf (t) =v*Integral from 0->Infinity
[f(lam)*lam*y0 (lam) *Exp[~-lam*t] ]dlam

wfa (t)=v*u*y0*Exp[-u*t]

wo=wf (previous time)...woa=wfa(previous time)

tau=t-t'

k(i)=kf(tau), function of tau (different for average lam, ka(i))

kf(tau)=v*Integral from O0->infinity[f(lam)*lam"2*Exp[-lam*tau]]dlam

kfa (tau)=v*u”2 * Exp[-u*tau]

x0=starting value of x

xOa=present initial value of x for analytic solution
npx=number of steps between output of x

npy=number of steps between output of y

nps=number of steps taken at last pump rate change

npc=number of steps to be taken before next pump change
nc=number of pump and soak cycles to be taken

jox,joy=# of outputs of x and y per pump on cycle

jfx,jfy=# of outputs of x and y per pump off cycle
cl-4f(p),cmlf,cm2f=constants for analytic solution evaluation
cl-4n,cml, cm2=present values for constants in analytic solution

Minimal variable declarations (remember: allocatable isn't F-77)

IMPLICIT DOUBLE PRECISION (A-H, 0-2Z)
DOUBLE PRECISION x [ALLOCATABLE] (:, :)
DOUBLE PRECISION k [ALLOCATABLE] (:)
DOUBLE PRECISION ka [ALLOCATABLE] (:)
DOUBLE PRECISION kf,kfa, lamb, lamv
DOUBLE PRECISION y [ALLOCATABLE] (:)
DOUBLE PRECISION lam[ALLOCATABLE] (:)
DOUBLE PRECISION £[ALLOCATABLE] (:)

INTEGER*4 m,j,ns,n,npc,npo,npf,nc,gaml, gam?2, gamv
INTEGER*4 jox, joy,ifx, jfy,npx, npy

INTEGER*1 nal,na2,nav

CHARACTER*7 fname

Functions

wE(tv,uv,vv,nav,bv,gv,y0v)=(uv + bv*gv*tv) *y0v*rvv/

+ (DEXP (gv*tv) * ((1D0 + bv*tv)**(nav + 1D0)))
wfa (tv,uv, vv,y0v) =uv*vv*y0v*DEXP { ~uv*tv)

kf (tau,uv,vv,nav, bv, gv) =vv* (

+ (uv**2D0) + (nav*(bv**2D0)*(1D0 + 2DO*gv*tau)) +
+ ((gv**2D0) * (tau**2D0) * (2D0*bv + (bv**2D0))) ) *DEXP (-gv*tau)/
+ ((1D0 + bv*tau)**(nav + 2D0))

kfa(tau,uv,vv)=(uv**2D0) *vv*DEXP (-uv*tau)
zf(pv,uv,vv)=SQRT ( (uv-pv) **2D0 + uv*vv* (2D0* (uv+pv) + uv*vv))

cmlf (pv,uv,vv)=(-pv - uv - zf(pv,uv,vv) - uv*vv)/2D0

cm2f (pv,uv,vv)=(-pv - uv + zf(pv,uv,vv) - uv*vv)/2D0

clf (pv,uv,vv,x0v,y0v)=(1D0/ (2D0*z£f (pv,uv,vv)) ) *
+ (x0v* (pv - uv + zf(pv,uv,vv) + uv*vv) - 2D0*yOv*uv*vv)
c2f(pv,uv,vv,x0v,y0v)=(1D0/ (2D0*zf (pv,uv,vv) ) ) *
+ (x0v* (-pv + uv + zf(pv,uv,vv) - uv*vv) + 2D0*yO0v*uv*vv)

G.2




NOQOQOCOOQOQOORrO

(]

25

c3f(pv,uv,vv,x0v,y0v)=(1D0/ (2D0*zf (pv,uv,vv) ) ) *

+ (yOv* (-pv + uv + zf(pv,uv,vv) - uv*vv) - 2D0*x0v*uv)
cdf(pv,uv,vv,x0v,y0v)=(1D0/ (2D0*zf (pv,uv,vv) ) ) *

+ (yOv*(pv - uv + zf(pv,uv,vv) + uv*vv) + 2D0*x0v*uv)
ganf (nav, bv, gv,gamv, lamv) = (1D0/ (gamv*bv) ) *

+ (( (lamv-gv) /bv) ** (nav-1D0) ) *DEXP ( (gv-lamv) /bv)
Formats

File x's

FORMAT(',',E11.4E2,',',E22.16E2,"',',E22.16E2,"',"',E22.16E2)
Pump on x's

FORMAT ('pon,',E11.4E2,',',E22.16E2,',',E22.16E2,"',"',E22.16E2)
Pump off x's
FORMAT (‘'poff,',E11.4E2,',',E22.16E2,"',"',E22.16E2,"',"',E22.16E2)

FORMAT (E10.4E2,E13.7E2,E10.4E2,E13.7E2,E10.4E2,E10.4E2,E10.4E2)
Input, header info

FORMAT (',',E8.3E2,',',E8.3E2,',',E8.3E2,"',"',1I3,"',"',13,
+ ‘',',E8.3E2,',',E8.3E2,"',"',E8.3E2)

File lambda,y format

FORMAT (E10.4E2,',',E10.4E2)

Input initial pump rate,pi, distribution parameters for each of two
distributions, dl (% in 1st dist.), nal, na2, ul, u2, (bl, b2 calc.)
gl, g2, initial conditions x0, y0, step size, h, # of pump cycles, nc,
# of pump steps, npo, # of printouts of x and y per pump cycle,

iox, ioy, # of soak steps, npf, # of printouts of x and y per soak
cycle, ifx, ify.

CONTINUE
WRITE(*,*) 'Default distribution?((dl,a,u,g)=(.5,3,1,0)) (1=yes)"
READ (*,*) ndef
IF (ndef.EQ.1) THEN
d1=1D0
nal=3
na2=nal
ul=1D0
u2=ul
gl=0D0
g2=gl
ELSE
WRITE (*,*) 'Input dl,nal,na2,ul,u2,gl,g2’
READ (*,*) dl,nal,na2,ul,u2,gl,g2
END IF
d2=1D0-d1
u=dl*ul + d2*u2
WRITE (*,*) 'Input pi,v,x0,y0,h,jox,joy,jfx,jfy,la"
READ (*,*) pi,v,x0,y0,h,jox,joy,jfx,jfy,la
WRITE (*,*) 'Set cycle times(=0), thresholds(=1l), or %chng(=2)?"'
READ (*,*) ncyc
IF (ncyc.EQ.0) THEN
WRITE (*,*) 'Input nc,npo,npf'
READ (*,*) nc,npo,npf
m= (npo+npf) *nc
npc=npo
ELSE IF (ncyc.EQ.1l) THEN
WRITE (*,*) 'Input m,pft,pot’
READ (*,*) m,pft,pot
npc=0
ELSE
WRITE (*,*) 'Input m,po’
READ (*,*) m,po
npc=0
END IF
p=pi
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cln=clf(p,u,v,x0,y0)
c2n=c2f(p,u,v,x0,y0)

tb=(LOG (cln)-LOG(c2n) ) /zf{p,u,v)
WRITE (*,*) 'tb=',6tb,', restart? (l=yes)'
READ (*,*) st

IF (st.EQ.1l) GOTO 20
c3n=c3f(p,u,v,x0,y0)
cdn=c4f(p,u,v,x0,y0)

cml=cmlf (p,u,v)

cm2=cm2f (p,u,v)

npx=jox

npy=joy

Initial conditions applied to anaytic solution
yOa=y0
yd=y0
x0a=x0

Initial time set to 0

t=0D0
ta=t

Allocate necessary array sizes

ALLOCATE (x{(1:2,0:m))
ALLOCATE (k(0:m))
ALLOCATE (ka(0:m))
ALLOCATE (y(l:1a))
ALLOCATE (lam(1l:1a))
ALLOCATE (£(1:1a))

Reads in output filename

diff=0D0

WRITE(*,*) ‘'Output to file? (l=yes,anything else=no)’

READ(*,*) Jf

IF (jf£.EQ.1) THEN
WRITE(*, *) 'Enter 7-char output file([appos]filenam[appos]):’
READ(*, *) fname

File for x data to be written to with header info and initial conditions

OPEN (1,FILE=fname//'.exx',STATUS='UNKNOWN',
ACCESS="'SEQUENTIAL', FORM="'FORMATTED')

WRITE (1,*) 'pi,v,dl,nal,na2,ul,u2,gl,g2,x0,y0,h="

WRITE (1,*) pi,v,dl,nal,na2,ul,u2,gl1,92,x0,y0,h

WRITE (1,*)

WRITE(1l,*)'t*Kr ', fname,'.dis ', fname,'.err ', fname,'.ave ='

WRITE (1,10) t,x0,diff,x0

File for y data to be written to with header info

OPEN (2,FILE=fname//'.why', STATUS='UNKNOWN',

ACCESS="'SEQUENTIAL',6 FORM='FORMATTED')
WRITE (2,%*) 'pi,v,dl,nal,na2,ul,u2,gl,g2,x0,y0, h="
WRITE (2,%*) pi,v,dl,nal,na2,ul,u2,gl,92,x0,y0,h
WRITE (2,*) 'fname=', fname
WRITE (2,%*)
END IF

Header info to screen

WRITE (*,*)
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WRITE (*,*) fname,', t,xdis,err,xan,ydis,yan, lamb="
WRITE (*,15) t,x0,diff,x0,yd,y0,u

c
c Initializing several variables
c
bl=(ul-gl) /nal
b2=(u2-g2) /na2
g=p+v*u
k(0)=dl*kf(t,ul,v,nal,bl,gl) + d2*kf(t,u2,v,na2,b2,g2)
ka(0)=kfa(t,u,v)
x(1,0)=x0
x(2,0)=x0
xan=x0
CALL gam (nal,gaml)
CALL gam (na?2,gam2)
bs=((u2+3D0*b2*SQRT (na2))-gl)/la
DO 50 j=1,la
lam(j)=gl + (2*j - 1)*bs/2
f(j)=dl*gamf (nal,bl,gl,gaml,lam(j)) +
+ d2*gamf (na2,b2,9g2,gam2, lam{j))
50 CONTINUE
c
c Present values for w, wa, and constants for analytic solution
c
w=dl*wf (t,ul,v,nal,bl,gl,y0) + d2*wf(t,u2,v,na2,b2,g2,y0)
wa=wfa(t,u,v,y0)
ns=0
c
c This ensures no integral contributions/summations on the first step
c
jd=0
c
c Constants to minimize calculations in the loop
c
c¢l=h/2D0
c2=cl**2
o]
c Start loop
c
DO 1000 n=1,m
c
c Step time
c
no=n-1
t=n*h
c
c Sets previous "new" values for w equal to the one time step old ones
c
wo=w
woa=wa
c
c New values for w and wa
c
w=dl*wf(t,ul,v,nal,bl,gl,y0) + d2*wf(t,u2,v,na2,b2,g2,y0)
wa=wfa(t,u,v,y0)
c
c Present values for k and ka
c
k(n)=dl*kf(t,ul,v,nal,bl,gl) + d2*kf(t,u2,v,na2,b2,g2)
ka(n)=kfa(t,u,v)
c
c Summations
c

stf=0D0




| stb=0D0
stfa=0D0
stba=0D0
IF (n.GT.2) THEN
DO 200 j=1,n-2
stf=stf + x(1,3)*k(no-3j)
stb=stb + x(1,7)*k(n-3j)
stfa=stfa + x(2,3j)*ka(no-j)
stba=stba + x(2,3j)*ka(n-j)
200 CONTINUE
END IF
stb=stb + jd*x(1,no)*k(1)
stba=stba + jd*x(2,no)*ka(l)

c
c Trapezoid steps
c
x(1l,n)=(x(1,no0) + cl*{w + wo - g*x{(1l,no) +
+ jd*cl* (x(1,0)*k(no) + x(1,no0)*k(0) + 2D0*stf) +
+ cl*(x(1,0)*k(n) + 2D0*stb)))/
+ (1D0 + cl*g - k(0)*c2)
x(2,n)=(x(2,n0) + cl*(wa+ woa- g*x(2,no) +
+ jd*cl* (x(2,0) *ka(no)+ x(2,no)*ka(0)+ 2D0*stfa)+
+ cl*(x{(2,0)*ka(n)+ 2D0*stba)))/
+ (1D0 + cl*g - ka(0)*c2)
c
c First step complete
c
jd=1
c
| c Calculate xan
c
ta=(n-ns)*h
xan=cln*DEXP (cml*ta) + c2n*DEXP(cm2*ta)
c
c Pump changing scheme
c
IF (ncyc.EQ.1) THEN
IF ((p.EQ.0DO).AND. (x(1,n).GT.pot)) npc=n-ns
IF ((p.EQ.pi).AND. (x(1,n).LT.pft)) npc=n-ns
ELSE IF (ncyc.EQ.2) THEN
pd=100D0*ABS(x(1,n0) - x(1,n))/xan
IF (pd.LT.po) npc=n-ns
END IF
IF ((n-ns).EQ.npc) THEN
diff=xan-x(2,n)
yO0b=c3n*DEXP (cml*ta) + c4n*DEXP{cm2*ta)
c Calculate y(lam,t) for output time and specified discrete lam's
yd=0
temp=0
DO 400 j=1,1la
sy=0
DO 300 jl=1,n-1
sy=sy + x(1,jl1)*DEXP(h*lam(j)*(jl-n))
300 CONTINUE
| y(3)=(y0 + lam(j)*h*x0/2)*DEXP(-lam(j)*t) +
| + lam(j)*h*(sy + x(1,n)/2D0)
yd=yd + £(j)*y(j)*bs
temp=temp + £(3j)*y(j)*bs*lam(j)
400 CONTINUE
lamb=temp/yd
npc=0
ns=n
c Reset analytic solution IC's
yO0a=c3n*DEXP(cml*ta) + c4n*DEXP{cm2*ta)
x0a=xan
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c output has pump on or pump off anotation next to it.
IF (p.EQ.0DO) THEN
p=pi
IF (ncyc.EQ.0) npc=npo
npx=jox
npy=joy

WRITE (*,15) t,x(1,n),diff,xan,yd,y0b, lamb
IF (jf£.EQ.1) WRITE (1,12) t,x(1l,n),xan,diff
ELSE
p=0D0
IF (ncyc.EQ.0) npc=npf
npx=jfx
npy=3jfy
WRITE (*,15) t,x(1,n),diff,xan,yd,y0b, lamb
IF (jf£.EQ.1) WRITE (1,14) t,x(1,n),xan,diff
END IF
c Reset p, g and analytic solution constants for pump change
cln=clf (p,u,v,x0a,yla)
c2n=c2f (p,u,v,x0a,y0la)
c3n=c3f (p,u,v,x0a,y0la)
cdn=c4f(p,u,v,x0a,y0a)
cml=cmlf (p,u,v)
cm2=cm2f (p,u,v)
c Time shift for analytic solution
g=p+v*u
END IF
IF ((MOD{(n-ns,npx).EQ.0).AND. (ns.NE.n)) THEN
diff=xan-x(2,n)
y0b=c3n*DEXP(cml*ta) + c4n*DEXP(cm2*ta)
c Calculate y(lam, t) for output time and specified discrete lam's
yd=0
temp=0
DO 460 j=1,1la
sy=0
DO 430 jl=1,n-1
sy=sy + x(1,3j1)*DEXP(h*lam(j)*(jl-n))

c Reset jp, npc, and nlp is set to ensure proper output; also,
|
|
|

430 CONTINUE
y(3)=(y0 + lam(j)*h*x0/2)*DEXP(-lam(j)*t) +
+ lam(j)*h*(sy + x(1,n)/2D0)

yd=yd + £(j)*y(j)*bs
temp=temp + £(j)*y(3)*bg*lam(]j)
460 CONTINUE
lamb=temp/yd
WRITE (*,15) t,x(1,n),diff,xan,yd,y0b, lamb
IF (jf£.EQ.1) WRITE (1,10) ¢t,x(1,n),xan,diff
END IF
IF (MOD(n-ns,npy).EQ.0) THEN
(e Output y
IF (jf.EQ.1) THEN
WRITE (2,%*)
WRITE (2,*) 'lam(j),y _t=',t
DO 500 j=1,1la
WRITE (2,17) lam(3j),y(3)
500 CONTINUE
END IF
IF (jf.EQ.1) THEN
WRITE (2,*)'yOb(analytic),vyd, lamb=",y0b,vyd, lamb
WRITE (2,%*)
END IF
END IF
IF (n.EQ.ns) WRITE (*,*) 'Pump changed!’
1000 CONTINUE

c Deallocation
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DEALLOCATE (x)
DEALLOCATE (k)
DEALLOCATE (ka)
DEALLOCATE (y)
DEALLOCATE (lam)
DEALLOCATE (f)

Allow another run

Q

IF (jf£.EQ.1l) THEN

CLOSE (1)
CLOSE (2)
END IF

WRITE (*,*) 'Another run? (l=yes,anything else=no)’
READ (*,*) mo

IF (mo.EQ.l) GOTO 20

END

SUBROUTINE gam (nalf,nans)

INTEGER*4 nans
INTEGER*1 nalf,m
nans=1

DO 2000 m=2,nalf-1
nans=nans*m
2000 CONTINUE

END
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